Yin, Xiuling; Liu, Yanqin Symplectic schemes for linear stochastic Schrödinger equations with variable coefficients. (English) Zbl 1470.65178 Abstr. Appl. Anal. 2014, Article ID 427023, 7 p. (2014). Summary: This paper proposes a kind of symplectic schemes for linear Schrödinger equations with variable coefficients and a stochastic perturbation term by using compact schemes in space. The numerical stability property of the schemes is analyzed. The schemes preserve a discrete charge conservation law. They also follow a discrete energy transforming formula. The numerical experiments verify our analysis. MSC: 65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs 35Q41 Time-dependent Schrödinger equations and Dirac equations 65P10 Numerical methods for Hamiltonian systems including symplectic integrators 35R60 PDEs with randomness, stochastic partial differential equations 60H35 Computational methods for stochastic equations (aspects of stochastic analysis) 65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs PDF BibTeX XML Cite \textit{X. Yin} and \textit{Y. Liu}, Abstr. Appl. Anal. 2014, Article ID 427023, 7 p. (2014; Zbl 1470.65178) Full Text: DOI References: [1] Ashyralyev, A.; Hanalyev, A.; Sobolevskii, P. E., Coercive solvability of the nonlocal boundary value problem for parabolic differential equations, Abstract and Applied Analysis, 6, 1, 53-61 (2001) · Zbl 0996.35027 [2] Pašić, M., Fite-Wintner-Leighton-type oscillation criteria for second-order differential equations with nonlinear damping, Abstract and Applied Analysis, 2013 (2013) · Zbl 1308.34043 [3] Abd-Elhameed, W. M.; Doha, E. H.; Youssri, Y. H., New wavelets collocation method for solving second-order multipoint boundary value problems using Chebyshev polynomials of third and fourth kinds, Abstract and Applied Analysis, 2013 (2013) · Zbl 1291.65238 [4] Ivaz, K.; Khastan, A.; Nieto, J. J., A numerical method for fuzzy differential equations and hybrid fuzzy differential equations, Abstract and Applied Analysis, 2013 (2013) · Zbl 1181.34005 [5] Ashyralyyev, C.; Dural, A.; Sozen, Y., Finite difference method for the reverse parabolic problem, Abstract and Applied Analysis, 2012 (2012) · Zbl 1246.65197 [6] Phillips, A., Introduction to Quantum Mechanics (2003), Chichester, UK: John Wiley & Sons, Chichester, UK [7] Milstein, G.; Tretyakov, M., Stochastic Numerics for Mathematical Physics (1995), Norwell, Mass, USA: Kluwer Academic Publishers, Norwell, Mass, USA [8] Hong, J.; Qin, M.-Z., Multisymplecticity of the centred box discretization for Hamiltonian PDEs with \(m \geq 2\) space dimensions, Applied Mathematics Letters, 15, 8, 1005-1011 (2002) · Zbl 1009.37051 [9] Kong, L.; Hong, J.; Wang, L.; Fu, F., Symplectic integrator for nonlinear high order Schrödinger equation with a trapped term, Journal of Computational and Applied Mathematics, 231, 2, 664-679 (2009) · Zbl 1171.65090 [10] Hong, J.; Liu, Y.; Munthe-Kaas, H.; Zanna, A., Globally conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients, Applied Numerical Mathematics, 56, 6, 814-843 (2006) · Zbl 1110.65116 [11] Hong, J.; Liu, X.; Li, C., Multi-symplectic Runge-Kutta-Nyström methods for nonlinear Schrödinger equations with variable coefficients, Journal of Computational Physics, 226, 2, 1968-1984 (2007) · Zbl 1132.65112 [12] Tang, Y.-F.; Vázquez, L.; Zhang, F.; Pérez-García, V. M., Symplectic methods for the nonlinear Schrödinger equation, Computers & Mathematics with Applications, 32, 5, 73-83 (1996) · Zbl 0858.65124 [13] Jiang, S.; Wang, L.; Hong, J., Stochastic multi-symplectic integrator for stochastic nonlinear Schrödinger equation, Communications in Computational Physics, 14, 2, 393-411 (2013) · Zbl 1373.60125 [14] Debussche, A.; di Menza, L., Numerical simulation of focusing stochastic nonlinear Schrödinger equations, Physica D, 162, 3-4, 131-154 (2002) · Zbl 0988.35156 [15] Ma, Y.; Kong, L.; Hong, J.; Cao, Y., High-order compact splitting multisymplectic method for the coupled nonlinear Schrödinger equations, Computers & Mathematics with Applications, 61, 2, 319-333 (2011) · Zbl 1211.65115 [16] Sekhar, T. V. S.; Raju, B. H. S., An efficient higher order compact scheme to capture heat transfer solutions in spherical geometry, Computer Physics Communications, 183, 11, 2337-2345 (2012) · Zbl 1302.80007 [17] Mohebbi, A.; Asgari, Z., Efficient numerical algorithms for the solution of “good” Boussinesq equation in water wave propagation, Computer Physics Communications, 182, 12, 2464-2470 (2011) · Zbl 1457.65147 [18] Hairer, E.; Lubich, C.; Wanner, G., Geometric Numerical Integration. Geometric Numerical Integration, Springer Series in Computational Mathematics, 31, xviii+644 (2006), Berlin, Germany: Springer, Berlin, Germany · Zbl 1094.65125 [19] Lele, S. K., Compact finite difference schemes with spectral-like resolution, Journal of Computational Physics, 103, 1, 16-42 (1992) · Zbl 0759.65006 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.