Deng, Zhiying; Huang, Yisheng Multiple symmetric results for quasilinear elliptic systems involving singular potentials and critical Sobolev exponents in \(\mathbb{R}^N\). (English) Zbl 1472.35183 Abstr. Appl. Anal. 2014, Article ID 430976, 14 p. (2014). Summary: This paper deals with a class of quasilinear elliptic systems involving singular potentials and critical Sobolev exponents in \(\mathbb{R}^N\). By using the symmetric criticality principle of Palais and variational methods, we prove several existence and multiplicity results of \(G\)-symmetric solutions under certain appropriate hypotheses on the potentials and parameters. Cited in 1 Document MSC: 35J62 Quasilinear elliptic equations 35J47 Second-order elliptic systems 35A01 Existence problems for PDEs: global existence, local existence, non-existence 35A15 Variational methods applied to PDEs Keywords:quasilinear elliptic systems; singular potentials; critical exponents; existence; variational methods × Cite Format Result Cite Review PDF Full Text: DOI OA License References: [1] Dautray, R.; Lions, J. L., Mathematical analysis and numerical methods for science and technology, Physical Origins and Classical Methods (1990), Berlin, Germany: Springer, Berlin, Germany · Zbl 0683.35001 [2] García Azorero, J. P.; Peral Alonso, I., Hardy inequalities and some critical elliptic and parabolic problems, Journal of Differential Equations, 144, 2, 441-476 (1998) · Zbl 0918.35052 · doi:10.1006/jdeq.1997.3375 [3] Ghoussoub, N.; Yuan, C., Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Transactions of the American Mathematical Society, 352, 12, 5703-5743 (2000) · Zbl 0956.35056 · doi:10.1090/S0002-9947-00-02560-5 [4] Kang, D., On the quasilinear elliptic problems with critical Sobolev-HARdy exponents and HARdy terms, Nonlinear Analysis: Theory, Methods & Applications, 68, 7, 1973-1985 (2008) · Zbl 1135.35042 · doi:10.1016/j.na.2007.01.024 [5] Chen, Z.; Zou, W., On an elliptic problem with critical exponent and Hardy potential, Journal of Differential Equations, 252, 2, 969-987 (2012) · Zbl 1233.35078 · doi:10.1016/j.jde.2011.09.042 [6] Ramaswamy, M.; Santra, S., Uniqueness and profile of positive solutions of a critical exponent problem with Hardy potential, Journal of Differential Equations, 254, 11, 4347-4372 (2013) · Zbl 1286.35093 · doi:10.1016/j.jde.2013.03.002 [7] Liu, H.; Zhao, L., Nontrivial solutions for a class of critical elliptic equations of Caffarelli-Kohn-Nirenberg type, Journal of Mathematical Analysis and Applications, 404, 2, 317-325 (2013) · Zbl 1307.35123 · doi:10.1016/j.jmaa.2013.03.016 [8] Carrião, P. C.; Demarque, R.; Miyagaki, O. H., Existence and non-existence of solutions for p-Laplacian equations with decaying cylindrical potentials, Journal of Differential Equations, 255, 10, 3412-3433 (2013) · Zbl 1321.35065 · doi:10.1016/j.jde.2013.07.037 [9] Deng, Y.; Jin, L., On symmetric solutions of a singular elliptic equation with critical Sobolev-Hardy exponent, Journal of Mathematical Analysis and Applications, 329, 1, 603-616 (2007) · Zbl 1241.35055 · doi:10.1016/j.jmaa.2006.06.070 [10] Waliullah, S., Minimizers and symmetric minimizers for problems with critical Sobolev exponent, Topological Methods in Nonlinear Analysis, 34, 2, 291-326 (2009) · Zbl 1200.35128 [11] Deng, Z.; Huang, Y., On \(G\)-symmetric solutions of a quasilinear elliptic equation involving critical Hardy-Sobolev exponent, Journal of Mathematical Analysis and Applications, 384, 2, 578-590 (2011) · Zbl 1229.35100 · doi:10.1016/j.jmaa.2011.06.012 [12] Bianchi, G.; Chabrowski, J.; Szulkin, A., On symmetric solutions of an elliptic equation with a nonlinearity involving critical Sobolev exponent, Nonlinear Analysis: Theory, Methods & Applications, 25, 1, 41-59 (1995) · Zbl 0823.35051 · doi:10.1016/0362-546X(94)E0070-W [13] Bartsch, T.; Willem, M., Infinitely Many Non-Radial Solutions of an Euclidean Scalar Field Equation (1992), Heidelberg, Germany: Mathematisches Institut, Universitat Heidelberg, Heidelberg, Germany [14] Chabrowski, J., On the existence of \(G\)-symmetric entire solutions for semilinear elliptic equations, Rendiconti del Circolo Matematico di Palermo, 41, 3, 413-440 (1992) · Zbl 0793.35027 · doi:10.1007/BF02848946 [15] Wu, T.-F., The Nehari manifold for a semilinear elliptic system involving sign-changing weight functions, Nonlinear Analysis: Theory, Methods & Applications, 68, 6, 1733-1745 (2008) · Zbl 1151.35342 · doi:10.1016/j.na.2007.01.004 [16] Nyamoradi, N., Existence and multiplicity of solutions to a singular elliptic system with critical Sobolev-Hardy exponents and concave-convex nonlinearities, Journal of Mathematical Analysis and Applications, 396, 1, 280-293 (2012) · Zbl 1255.35117 · doi:10.1016/j.jmaa.2012.06.026 [17] Lü, D.; Xiao, J., Multiple solutions for weighted nonlinear elliptic system involving critical exponents, Mathematical and Computer Modelling, 55, 3-4, 816-827 (2012) · Zbl 1255.35100 · doi:10.1016/j.mcm.2011.09.007 [18] Li, Y.; Gao, W., Existence of multiple solutions for singular quasilinear elliptic system with critical sobolev-hardy exponents and concave-convex terms, Acta Mathematica Scientia B, 33, 1, 107-121 (2013) · Zbl 1289.35116 · doi:10.1016/S0252-9602(12)60197-0 [19] Alves, C. O.; de Morais Filho, D. C.; Souto, M. A. S., On systems of elliptic equations involving subcritical or critical Sobolev exponents, Nonlinear Analysis, 42, 5, 771-787 (2000) · Zbl 0958.35037 · doi:10.1016/S0362-546X(99)00121-2 [20] Long, J.; Yang, J., Existence results for critical singular elliptic systems, Nonlinear Analysis: Theory, Methods & Applications, 69, 11, 4199-4214 (2008) · Zbl 1159.35338 · doi:10.1016/j.na.2007.10.048 [21] de Souza, M., On a singular class of elliptic systems involving critical growth in \(R^2\), Nonlinear Analysis: Real World Applications, 12, 2, 1072-1088 (2011) · Zbl 1206.35095 · doi:10.1016/j.nonrwa.2010.09.001 [22] Benmouloud, S.; Echarghaoui, R.; Sbaï, S. M., Multiplicity of positive solutions for a critical quasilinear elliptic system with concave and convex nonlinearities, Journal of Mathematical Analysis and Applications, 396, 1, 375-385 (2012) · Zbl 1255.35119 · doi:10.1016/j.jmaa.2012.05.078 [23] Sun, J.; Chen, H.; Nieto, J. J., On ground state solutions for some non-autonomous Schrödinger-Poisson systems, Journal of Differential Equations, 252, 5, 3365-3380 (2012) · Zbl 1241.35057 · doi:10.1016/j.jde.2011.12.007 [24] Deng, Z.; Huang, Y., Existence of symmetric solutions for singular semilinear elliptic systems with critical Hardy-Sobolev exponents, Nonlinear Analysis: Real World Applications, 14, 1, 613-625 (2013) · Zbl 1388.35040 · doi:10.1016/j.nonrwa.2012.07.021 [25] Huang, D.; Li, Y., Multiplicity of solutions for a noncooperative \(p\)-Laplacian elliptic system in \(R^N\), Journal of Differential Equations, 215, 1, 206-223 (2005) · Zbl 1181.35060 · doi:10.1016/j.jde.2004.09.001 [26] Palais, R. S., The principle of symmetric criticality, Communications in Mathematical Physics, 69, 1, 19-30 (1979) · Zbl 0417.58007 · doi:10.1007/BF01941322 [27] Lions, P. L., The concentration-compactness principle in the calculus of variations, Revista Matemática Iberoamericana, 1, 1, part 1, 145-201 (1985) · Zbl 0704.49005 · doi:10.4171/RMI/6 [28] Lions, P., The concentration-compactness principle in the calculus of variations. The limit case, part 2, Revista Matemática Iberoamericana, 1, 2, 45-121 (1985) · Zbl 0704.49006 · doi:10.4171/RMI/12 [29] Ambrosetti, A.; Rabinowitz, P. H., Dual variational methods in critical point theory and applications, Journal of Functional Analysis, 14, 349-381 (1973) · Zbl 0273.49063 [30] Brezis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Communications on Pure and Applied Mathematics, 36, 4, 437-477 (1983) · Zbl 0541.35029 · doi:10.1002/cpa.3160360405 [31] Rabinowitz, H., Methods in Critical Point Theory with Applications to Differential Equations. Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics (1986), American Mathematical Society · Zbl 0609.58002 [32] Brézis, H.; Lieb, E., A relation between pointwise convergence of functions and convergence of functionals, Proceedings of the American Mathematical Society, 88, 3, 486-490 (1983) · Zbl 0526.46037 · doi:10.2307/2044999 [33] Han, P., The effect of the domain topology on the number of positive solutions of an elliptic system involving critical Sobolev exponents, Houston Journal of Mathematics, 32, 4, 1241-1257 (2006) · Zbl 1200.35116 [34] Ekeland, I., Nonconvex minimization problems, Bulletin of the American Mathematical Society, 1, 3, 443-474 (1979) · Zbl 0441.49011 · doi:10.1090/S0273-0979-1979-14595-6 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.