Combinatorial properties and characterization of glued semigroups. (English) Zbl 1470.20031

Summary: This work focuses on the combinatorial properties of glued semigroups and provides its combinatorial characterization. Some classical results for affine glued semigroups are generalized and some methods to obtain glued semigroups are developed.


20M14 Commutative semigroups
Full Text: DOI arXiv


[1] Rosales, J. C.; García-Sánchez, P. A., Finitely Generated Commutative Monoids (1999), New York, NY, USA: Nova Science Publishers, New York, NY, USA · Zbl 0966.20028
[2] Herzog, J., Generators and relations of abelian semigroups and semigroup rings, Manuscripta Mathematica, 3, 2, 175-193 (1970) · Zbl 0211.33801 · doi:10.1007/BF01273309
[3] Sturmfels, B., Gröbner Bases and Convex Polytopes. Gröbner Bases and Convex Polytopes, University Lecture, 8 (1996), Providence, RI, USA: American Mathematical Society, Providence, RI, USA · Zbl 0856.13020
[4] Rosales, J. C., On presentations of subsemigroups of \(ℕ^n\), Semigroup Forum, 55, 2, 152-159 (1997) · Zbl 0951.20042 · doi:10.1007/PL00005916
[5] Thoma, A., Construction of set theoretic complete intersections via semigroup gluing, Beitrage zur Algebra und Geometrie, 41, 1, 195-198 (2000) · Zbl 0944.14018
[6] Briales, E.; Campillo, A.; Marijuán, C.; Pisón, P., Minimal systems of generators for ideals of semigroups, Journal of Pure and Applied Algebra, 124, 1-3, 7-30 (1998) · Zbl 0913.20036 · doi:10.1016/S0022-4049(96)00106-5
[7] Eliahou, S., Courbes monomiales et algébre de Rees symbolique [Ph.D. thesis] (1983), Genève, Switzerland: Université of Genève, Genève, Switzerland
[8] Ojeda, I.; Vigneron-Tenorio, A., Simplicial complexes and minimal free resolution of monomial algebras, Journal of Pure and Applied Algebra, 214, 6, 850-861 (2010) · Zbl 1195.13015 · doi:10.1016/j.jpaa.2009.08.009
[9] Ohsugi, H.; Hibi, T., Toric ideals arising from contingency tables, Commutative Algebra and Combinatorics. Commutative Algebra and Combinatorics, Ramanujan Mathematical Society Lecture Notes Series, 4, 91-115 (2007), Mysore, India: Ramanujan Mathematical Society, Mysore, India · Zbl 1187.13024
[10] Ojeda, I.; Vigneron-Tenorio, A., Indispensable binomials in semigroup ideals, Proceedings of the American Mathematical Society, 138, 12, 4205-4216 (2010) · Zbl 1204.13014 · doi:10.1090/S0002-9939-2010-10456-2
[11] García-Sánchez, P. A.; Ojeda, I., Uniquely presented finitely generated commutative monoids, Pacific Journal of Mathematics, 248, 1, 91-105 (2010) · Zbl 1208.20052 · doi:10.2140/pjm.2010.248.91
[12] Vigneron-Tenorio, A., Semigroup ideals and linear diophantine equations, Linear Algebra and Its Applications, 295, 1-3, 133-144 (1999) · Zbl 0939.20061 · doi:10.1016/S0024-3795(99)00087-7
[13] Cohen, H., A Course in Computational Algebraic Number Theory. A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, 138 (1996), New York, NY, USA: Springer, New York, NY, USA · Zbl 0786.11071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.