Generalized mutual synchronization between two controlled interdependent networks. (English) Zbl 1406.93055

Summary: This paper mainly focuses on the generalized mutual synchronization between two controlled interdependent networks. First, we propose the general model of controlled interdependent networks \(A\) and \(B\) with time-varying internetwork delays coupling. Then, by constructing Lyapunov functions and utilizing adaptive control technique, some sufficient conditions are established to ensure that the mutual synchronization errors between the state variables of networks \(A\) and \(B\) can asymptotically converge to zero. Finally, two numerical examples are given to illustrate the effectiveness of the theoretical results and to explore potential application in future smart grid. The simulation results also show how interdependent topologies and internetwork coupling delays influence the mutual synchronizability, which help to design interdependent networks with optimal mutual synchronizability.


93A15 Large-scale systems
93C40 Adaptive control/observation systems
90B10 Deterministic network models in operations research
Full Text: DOI


[1] Watts, D. J.; Strogatz, S. H., Collective dynamics of ’small-world9 networks, Nature, 393, 6684, 440-442, (1998) · Zbl 1368.05139
[2] Strogatz, S. H., Exploring complex networks, Nature, 410, 6825, 268-276, (2001) · Zbl 1370.90052
[3] Newman, M. E. J., The structure and function of complex networks, Society for Industrial and Applied Mathematics, 45, 2, 167-256, (2003) · Zbl 1029.68010
[4] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.-U., Complex networks: structure and dynamics, Physics Reports, 424, 4-5, 175-308, (2006) · Zbl 1371.82002
[5] Barabási, A.-L., Scale-free networks: a decade and beyond, Science, 325, 5939, 412-413, (2009) · Zbl 1226.91052
[6] Arenas, A.; Díaz-Guilera, A.; Kurths, J.; Moreno, Y.; Zhou, C., Synchronization in complex networks, Physics Reports, 469, 3, 93-153, (2008)
[7] Zhao, M.; Zhou, T.; Wang, B.-H.; Wang, W.-X., Enhanced synchronizability by structural perturbations, Physical Review E, 72, 5, (2005)
[8] Zhao, M.; Zhou, T.; Wang, B.-H.; Yan, G.; Yang, H.-J.; Bai, W.-J., Relations between average distance, heterogeneity and network synchronizability, Physica A, 371, 2, 773-780, (2006)
[9] Wang, X. F.; Chen, G., Synchronization in scale-free dynamical networks: robustness and fragility, IEEE Transactions on Circuits and Systems I, 49, 1, 54-62, (2002) · Zbl 1368.93576
[10] Liu, B.; Liu, X.; Chen, G.; Wang, H., Robust impulsive synchronization of uncertain dynamical networks, IEEE Transactions on Circuits and Systems I, 52, 7, 1431-1441, (2005) · Zbl 1374.82016
[11] Wang, J.-L.; Wu, H.-N., Local and global exponential output synchronization of complex delayed dynamical networks, Nonlinear Dynamics, 67, 1, 497-504, (2012) · Zbl 1242.93008
[12] Shang, Y.; Chen, M.; Kurths, J., Generalized synchronization of complex networks, Physical Review E, 80, 2, (2009)
[13] Wu, X.; Lu, H., Projective lag synchronization of the general complex dynamical networks with distinct nodes, Communications in Nonlinear Science and Numerical Simulation, 17, 11, 4417-4429, (2012) · Zbl 1248.93096
[14] Park, M. J.; Kwon, O. M.; Park, J. H.; Lee, S. M.; Cha, E. J., On synchronization criterion for coupled discrete-time neural networks with interval time-varying delays, Neurocomputing, 99, 188-196, (2013) · Zbl 1274.93251
[15] Mahdavi, N.; Menhaj, M. B.; Kurths, J.; Lu, J., Fuzzy complex dynamical networks and its synchronization, IEEE Transactions on Cybernetics, 43, 2, 648-659, (2013)
[16] Li, Z.; Feng, G.; Hill, D., Controlling complex dynamical networks with coupling delays to a desired orbit, Physics Letters A, 359, 1, 42-46, (2006) · Zbl 1209.93136
[17] Li, X.; Wang, X.; Chen, G., Pinning a complex dynamical network to its equilibrium, IEEE Transactions on Circuits and Systems I, 51, 10, 2074-2087, (2004) · Zbl 1374.94915
[18] Lu, J.; Ho, D. W. C.; Cao, J.; Kurths, J., Single impulsive controller for globally exponential synchronization of dynamical networks, Nonlinear Analysis, Real World Applications, 14, 1, 581-593, (2013) · Zbl 1254.93133
[19] Li, C.; Sun, W.; Kurths, J., Synchronization between two coupled complex networks, Physical Review E, 76, 4, (2007)
[20] Lerescu, A. I.; Constandache, N.; Oancea, S.; Grosu, I., Collection of master-slave synchronized chaotic systems, Chaos, Solitons and Fractals, 22, 3, 599-604, (2004) · Zbl 1096.93016
[21] Tang, H.; Chen, L.; Lu, J.-A.; Tse, C. K., Adaptive synchronization between two complex networks with nonidentical topological structures, Physica A, 387, 22, 5623-5630, (2008)
[22] Wu, X.; Zheng, W. X.; Zhou, J., Generalized outer synchronization between complex dynamical networks, Chaos, 19, 1, (2009) · Zbl 1311.34119
[23] Jian-Rui, C.; Li-Cheng, J.; Jian-She, W.; Xiao-Hua, W., Adaptive synchronization between two different complex networks with time-varying delay coupling, Chinese Physics Letters, 26, 6, (2009)
[24] Li, Z.; Xue, X., Outer synchronization of coupled networks using arbitrary coupling strength, Chaos, 20, 2, (2010) · Zbl 1311.34116
[25] Wang, G.; Cao, J.; Lu, J., Outer synchronization between two nonidentical networks with circumstance noise, Physica A, 389, 7, 1480-1488, (2010)
[26] Bian, Q.; Yao, H., Generalized synchronization between two complex dynamical networks with time-varying delay and nonlinear coupling, Mathematical Problems in Engineering, 2011, (2011) · Zbl 1235.93104
[27] Wu, X.; Lu, H., Outer synchronization of uncertain general complex delayed networks with adaptive coupling, Neurocomputing, 82, 157-166, (2012)
[28] Zheng, S.; Wang, S.; Dong, G.; Bi, Q., Adaptive synchronization of two nonlinearly coupled complex dynamical networks with delayed coupling, Communications in Nonlinear Science and Numerical Simulation, 17, 1, 284-291, (2012) · Zbl 1239.93060
[29] Wu, Y.; Li, C.; Wu, Y.; Kurths, J., Generalized synchronization between two different complex networks, Communications in Nonlinear Science and Numerical Simulation, 17, 1, 349-355, (2012) · Zbl 1239.93052
[30] Buldyrev, S. V.; Parshani, R.; Paul, G.; Stanley, H. E.; Havlin, S., Catastrophic cascade of failures in interdependent networks, Nature, 464, 7291, 1025-1028, (2010)
[31] Mei, S.-W.; Wang, Y.-Y.; Chen, L.-J., Overviews and prospects of the cyber security of smart grid from the view of complex network theory, High Voltage Engineering, 37, 3, 672-679, (2011)
[32] Brummitt, C. D.; D’Souza, R. M.; Leicht, E. A., Suppressing cascades of load in interdependent networks, Proceedings of the National Academy of Sciences of the United States of America, 109, 12, E680-E689, (2012)
[33] Buldyrev, S. V.; Shere, N. W.; Cwilich, G. A., Interdependent networks with identical degrees of mutually dependent nodes, Physical Review E, 83, 1, (2011)
[34] Vespignani, A., Complex networks: the fragility of interdependency, Nature, 464, 7291, 984-985, (2010)
[35] Dong, G.; Gao, J.; Du, R.; Tian, L.; Stanley, H. E.; Havlin, S., Robustness of network of networks under targeted attack, Physical Review E, 87, 5, (2013)
[36] Gao, J.; Buldyrev, S. V.; Stanley, H. E.; Havlin, S., Networks formed from interdependent networks, Nature Physics, 8, 1, 40-48, (2012)
[37] Shao, J.; Buldyrev, S. V.; Havlin, S.; Stanley, H. E., Cascade of failures in coupled network systems with multiple support-dependence relations, Physical Review E, 83, 3, (2011)
[38] Um, J.; Minnhagen, P.; Kim, B. J., Synchronization in interdependent networks, Chaos, 21, 2, (2011) · Zbl 1317.34068
[39] Zhao, H.; Ma, Y.; Liu, S.; Yue, Y., Fuzzy sliding mode variable structure control of chaotic power system with uncertainty, Journal of Computational Information Systems, 7, 6, 1959-1966, (2011)
[40] Xiang, W.; Xiao, J., Finite-time stability and stabilisation for switched linear systems, International Journal of Systems Science, 44, 2, 384-400, (2013) · Zbl 1307.93366
[41] Xiang, W.; Xiao, J., Stability analysis and control synthesis of switched impulsive systems, International Journal of Robust and Nonlinear Control, 22, 13, 1440-1459, (2012) · Zbl 1287.93079
[42] Xiang, W.; Xiao, J.; Han, L., H∞ control synthesis for short-time Markovian jump continuous time linear systems, Circuits, Systems, and Signal Processing, 32, 6, 2799-2820, (2013)
[43] Xiang, W.; Xiao, J.; Iqbal, M. N., H∞ control for switched fuzzy systems via dynamic output feedback: hybrid and switched approaches, Communications in Nonlinear Science and Numerical Simulation, 18, 6, 1499-1514, (2013) · Zbl 1278.93152
[44] Xiang, W.; Xiao, J., H∞ control synthesis of switched discrete-time fuzzy systems via hybrid approach, Optimal Control, Applications and Methods, 34, 6, 635-655, (2013) · Zbl 1282.93118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.