Hussain, N.; Kutbi, M. A.; Khaleghizadeh, S.; Salimi, P. Discussions on recent results for \(\alpha\)-\(\psi\)-contractive mappings. (English) Zbl 1469.54117 Abstr. Appl. Anal. 2014, Article ID 456482, 13 p. (2014). Summary: We establish certain fixed point results for \(\alpha - \eta\)-generalized convex contractions, \(\alpha - \eta\)-weakly Zamfirescu mappings, and \(\alpha - \eta\)-Ćirić strong almost contractions. As an application, we derive some Suzuki type fixed point theorems and certain new fixed point theorems in metric spaces endowed with a graph and a partial order. Moreover, we discuss some illustrative examples to highlight the realized improvements. Cited in 13 Documents MSC: 54H25 Fixed-point and coincidence theorems (topological aspects) 54E40 Special maps on metric spaces × Cite Format Result Cite Review PDF Full Text: DOI OA License References: [1] Espínola, R.; Kirk, W. A., Fixed point theorems in \(R\)-trees with applications to graph theory, Topology and its Applications, 153, 7, 1046-1055 (2006) · Zbl 1095.54012 · doi:10.1016/j.topol.2005.03.001 [2] Agarwal, R. P.; Hussain, N.; Taoudi, M.-A., Fixed point theorems in ordered Banach spaces and applications to nonlinear integral equations, Abstract and Applied Analysis, 2012 (2012) · Zbl 1252.47044 [3] Abbas, M.; Altun, I.; Romaguera, S., Common fixed points of Ćirić-type contractions on partial metric spaces, Publicationes Mathematicae Debrecen, 82, 2, 425-438 (2013) · Zbl 1299.54074 · doi:10.5486/PMD.2013.5342 [4] Ćirić, L. B., A generalization of Banach’s contraction principle, Proceedings of the American Mathematical Society, 45, 267-273 (1974) · Zbl 0291.54056 [5] Ćirić, L.; Hussain, N.; Cakić, N., Common fixed points for Ćirić type \(f\)-weak contraction with applications, Publicationes Mathematicae Debrecen, 76, 1-2, 31-49 (2010) · Zbl 1261.47071 [6] Ćirić, L.; Abbas, M.; Saadati, R.; Hussain, N., Common fixed points of almost generalized contractive mappings in ordered metric spaces, Applied Mathematics and Computation, 217, 12, 5784-5789 (2011) · Zbl 1206.54040 · doi:10.1016/j.amc.2010.12.060 [7] Geraghty, M. A., On contractive mappings, Proceedings of the American Mathematical Society, 40, 604-608 (1973) · Zbl 0245.54027 · doi:10.1090/S0002-9939-1973-0334176-5 [8] Gopal, M.; Imdad, M.; Vetro, C.; Hasan, M., Fixed point theory for cyclic weak \(\phi \)-contraction in fuzzy metric spaces, Journal Nonlinear Analysis and Application (2012) [9] Hussain, N.; Karapınar, E.; Salimi, P.; Akbar, F., \( \alpha \)-admissible mappings and related fixed point theorems, Journal of Inequalities and Applications, 2013: article 114 (2013) · Zbl 1293.54023 · doi:10.1186/1029-242X-2013-114 [10] Hussain, N.; Khamsi, M. A., On asymptotic pointwise contractions in metric spaces, Nonlinear Analysis: Theory, Methods & Applications, 71, 10, 4423-4429 (2009) · Zbl 1176.54031 · doi:10.1016/j.na.2009.02.126 [11] Yao, J.-C.; Zeng, L.-C., Fixed point theorem for asymptotically regular semigroups in metric spaces with uniform normal structure, Journal of Nonlinear and Convex Analysis, 8, 1, 153-163 (2007) · Zbl 1121.47045 [12] Istrăţescu, V. I., Some fixed point theorems for convex contraction mappings and mappings with convex diminishing diameters. I, Annali di Matematica Pura ed Applicata, 130, 4, 89-104 (1982) · Zbl 0477.54033 · doi:10.1007/BF01761490 [13] Miandaragh, M. A.; Postolache, M.; Rezapour, Sh., Approximate fixed points of generalized convex contractions, Fixed Point Theory and Applications, 2013, article 255 (2013) · Zbl 1289.54135 [14] Salimi, P.; Latif, A.; Hussain, N., Modified alpha-psi-contractive mappings with applications, Fixed Point Theory and Applications, 2013151 (2013) · Zbl 1293.54036 [15] Samet, B.; Vetro, C.; Vetro, P., Fixed point theorems for \(\alpha-\psi \)-contractive type mappings, Nonlinear Analysis: Theory, Methods & Applications, 75, 4, 2154-2165 (2012) · Zbl 1242.54027 · doi:10.1016/j.na.2011.10.014 [16] Karapınar, E.; Samet, B., Generalized \(\alpha-\psi\) contractive type mappings and related fixed point theorems with applications, Abstract and Applied Analysis, 2012 (2012) · Zbl 1252.54037 · doi:10.1155/2012/793486 [17] Salimi, P.; Karapınar, E., Suzuki-Edelstein type contractions via auxiliary functions, Mathematical Problems in Engineering, 2013 (2013) · Zbl 1299.47105 · doi:10.1155/2013/648528 [18] Berinde, M., Approximate fixed point theorems, Studia Universitatis Babeş-Bolyai, 51, 1, 11-25 (2006) · Zbl 1164.54028 [19] Hussain, N.; Amini-Harandi, A.; Cho, Y. J., Approximate endpoints for set-valued contractions in metric spaces, Fixed Point Theory and Applications, 2010 (2010) · Zbl 1202.54033 [20] Ariza-Ruiz, D.; Jiménez-Melado, A.; López-Acedo, G., A fixed point theorem for weakly Zamfirescu mappings, Nonlinear Analysis: Theory, Methods & Applications, 74, 5, 1628-1640 (2011) · Zbl 1217.54037 · doi:10.1016/j.na.2010.10.033 [21] Berinde, V., Some remarks on a fixed point theorem for Ćirić-type almost contractions, Carpathian Journal of Mathematics, 25, 2, 157-162 (2009) · Zbl 1249.54078 [22] Suzuki, T., A generalized Banach contraction principle that characterizes metric completeness, Proceedings of the American Mathematical Society, 136, 5, 1861-1869 (2008) · Zbl 1145.54026 · doi:10.1090/S0002-9939-07-09055-7 [23] Hussain, N.; Kutbi, M. A.; Salimi, P., Fixed point theory in alpha-psi-complete metric spaces with applications · Zbl 1429.54051 [24] Jachymski, J., The contraction principle for mappings on a metric space with a graph, Proceedings of the American Mathematical Society, 136, 4, 1359-1373 (2008) · Zbl 1139.47040 · doi:10.1090/S0002-9939-07-09110-1 [25] Hussain, N.; Al-Mezel, S.; Salimi, P., Fixed points for \(\psi \)-graphic contractions with application to integral equations, Abstract and Applied Analysis, 2013 (2013) · Zbl 1294.54026 · doi:10.1155/2013/575869 [26] Hussain, N.; Kutbi, M. A.; Salimi, P., Best proximity point results for modified \(\alpha-\psi \)-proximal rational contractions, Abstract and Applied Analysis (2013) · Zbl 1470.54065 [27] Hussain, N.; Khan, A. R.; Agarwal, R. P., Krasnosel’skii and Ky Fan type fixed point theorems in ordered Banach spaces, Journal of Nonlinear and Convex Analysis, 11, 3, 475-489 (2010) · Zbl 1219.47079 [28] Hussain, N.; Taoudi, M. A., Krasnosel’skii-type fixed point theorems with applications to Volterra integralequations, Fixed Point Theory and Applications, 2013, article 196 (2013) · Zbl 1302.47083 [29] Ansari, Q. H.; Idzik, A.; Yao, J.-C., Coincidence and fixed point theorems with applications, Topological Methods in Nonlinear Analysis, 15, 1, 191-202 (2000) · Zbl 1029.54047 [30] Nieto, J. J.; Rodríguez-López, R., Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22, 3, 223-239 (2005) · Zbl 1095.47013 · doi:10.1007/s11083-005-9018-5 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.