Parameter estimation for long-memory stochastic volatility at discrete observation. (English) Zbl 1472.62037

Summary: Ordinary least squares estimators of variogram parameters in long-memory stochastic volatility are studied in this paper. We use the discrete observations for practical purposes under the assumption that the Hurst parameter \(H \in(1 / 2,1)\) is known. Based on the ordinary least squares method, we obtain both the explicit estimators for drift and diffusion by minimizing the distance function between the variogram and the data periodogram. Furthermore, the resulting estimators are shown to be consistent and to have the asymptotic normality. Numerical examples are also presented to illustrate the performance of our method.


62F10 Point estimation
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62-08 Computational methods for problems pertaining to statistics
Full Text: DOI


[1] Taylor, S. J., Modeling Financial Time Series (1986), Chichester, UK: John Wiley & Sons, Chichester, UK · Zbl 1130.91345
[2] Robinson, P. M., Time Series with Long Memory. Time Series with Long Memory, Advanced Texts in Econometrics, x+382 (2003), Oxford, UK: Oxford University Press, Oxford, UK · Zbl 1113.62106
[3] Breidt, F. J.; Crato, N.; de Lima, P., The detection and estimation of long memory in stochastic volatility, Journal of Econometrics, 83, 1-2, 325-348 (1998) · Zbl 0905.62116 · doi:10.1016/S0304-4076(97)00072-9
[4] Harvey, A. C., Long memory in stochastic volatility, Forecasting Volatility in Financial Markets, 307-320 (2002), Oxford, UK: Butterworth-Haineman, Oxford, UK
[5] Robinson, P. M.; Zaffaroni, P., Nonlinear time series with long memory: a model for stochastic volatility, Journal of Statistical Planning and Inference, 68, 2, 359-371 (1998) · Zbl 0937.62109 · doi:10.1016/S0378-3758(97)00149-3
[6] Comte, F.; Renault, E., Long memory in continuous-time stochastic volatility models, Mathematical Finance, 8, 4, 291-323 (1998) · Zbl 1020.91021 · doi:10.1111/1467-9965.00057
[7] Comte, F.; Coutin, L.; Renault, E., Affine fractional stochastic volatility models, Annals of Finance, 8, 2-3, 337-378 (2012) · Zbl 1298.60067 · doi:10.1007/s10436-010-0165-3
[8] Chronopoulou, A.; Viens, F. G., Estimation and pricing under long-memory stochastic volatility, Annals of Finance, 8, 2-3, 379-403 (2012) · Zbl 1298.91160 · doi:10.1007/s10436-010-0156-4
[9] Geweke, J.; Porter-Hudak, S., The estimation and application of long memory time series models, Journal of Time Series Analysis, 4, 4, 221-238 (1983) · Zbl 0534.62062 · doi:10.1111/j.1467-9892.1983.tb00371.x
[10] Deo, R. S.; Hurvich, C. M., On the log periodogram regression estimator of the memory parameter in long memory stochastic volatility models, Econometric Theory, 17, 4, 686-710 (2001) · Zbl 1018.62079 · doi:10.1017/S0266466601174025
[11] Arteche, J., Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models, Journal of Econometrics, 119, 1, 131-154 (2004) · Zbl 1337.62241 · doi:10.1016/S0304-4076(03)00158-1
[12] Chen, W. W.; Deo, R. S., Power transformations to induce normality and their applications, Journal of the Royal Statistical Society. Series B. Statistical Methodology, 66, 1, 117-130 (2004) · Zbl 1063.62065 · doi:10.1111/j.1467-9868.2004.00435.x
[13] Brockwell, P. J.; Davis, R. A., Time Series: Theory and Methods. Time Series: Theory and Methods, Springer Series in Statistics (2009), New York, NY, USA: Springer, New York, NY, USA · Zbl 1169.62074
[14] Casas, I.; Gao, J., Econometric estimation in long-range dependent volatility models: theory and practice, Journal of Econometrics, 147, 1, 72-83 (2008) · Zbl 1429.62463 · doi:10.1016/j.jeconom.2008.09.035
[15] Chronopoulou, A.; Viens, F. G., Stochastic volatility and option pricing with long-memory in discrete and continuous time, Quantitative Finance, 12, 4, 635-649 (2012) · Zbl 1278.91112 · doi:10.1080/14697688.2012.664939
[16] Cheridito, P.; Kawaguchi, H.; Maejima, M., Fractional Ornstein-Uhlenbeck processes, Electronic Journal of Probability, 8, 3, 1-14 (2003) · Zbl 1065.60033 · doi:10.1214/EJP.v8-125
[17] Xiao, W.; Zhang, W.; Xu, W., Parameter estimation for fractional Ornstein-Uhlenbeck processes at discrete observation, Applied Mathematical Modelling, 35, 9, 4196-4207 (2011) · Zbl 1225.62116 · doi:10.1016/j.apm.2011.02.047
[18] Hu, Y.; Nualart, D., Parameter estimation for fractional Ornstein-Uhlenbeck processes, Statistics & Probability Letters, 80, 11-12, 1030-1038 (2010) · Zbl 1187.62137 · doi:10.1016/j.spl.2010.02.018
[19] Rosenbaum, M., Estimation of the volatility persistence in a discretely observed diffusion model, Stochastic Processes and Their Applications, 118, 8, 1434-1462 (2008) · Zbl 1142.62055 · doi:10.1016/j.spa.2007.09.004
[20] Viens, F. G.; Wells, W., Portfolio optimization under partially observed stochastic volatility, Proceedings of the 8th International Conference on Advances in Communication and Control (COMCON ’02), Optimization Software, Inc.
[21] Scott, L., Option pricing when the variance changes randomly: theory, estimation, and an application, Journal of Financial and Quantitative Analysis, 22, 3, 419-438 (1987)
[22] Nourdin, I., Schémas d’approximation associés à une équation différentielle dirigée par une fonction höldérienne; cas du mouvement brownien fractionnaire, Comptes Rendus de l’Académie des Sciences. Series I. Mathematics, 340, 8, 611-614 (2005) · Zbl 1075.60073 · doi:10.1016/j.crma.2005.03.013
[23] Neuenkirch, A.; Nourdin, I., Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion, Journal of Theoretical Probability, 20, 4, 871-899 (2007) · Zbl 1141.60043 · doi:10.1007/s10959-007-0083-0
[24] Mishura, Y. S., Stochastic Calculus for Fractional Brownian Motion and Related Processes. Stochastic Calculus for Fractional Brownian Motion and Related Processes, Lecture Notes in Mathematics, 1929, xviii+393 (2008), Berlin, Germany: Springer, Berlin, Germany · Zbl 1138.60006 · doi:10.1007/978-3-540-75873-0
[25] Belfadli, R.; Es-Sebaiy, K.; Ouknine, Y., Parameter estimation for fractional Ornstein-Uhlenbeck processes: non-ergodic case
[26] Lahiri, S. N.; Lee, Y.; Cressie, N., On asymptotic distribution and asymptotic efficiency of least squares estimators of spatial variogram parameters, Journal of Statistical Planning and Inference, 103, 1-2, 65-85 (2002) · Zbl 0989.62049 · doi:10.1016/S0378-3758(01)00198-7
[27] Paxson, V., Fast approximate synthesis of fractional Gaussian noise for generating self-similar network traffic, Computer Communication Review, 27, 5, 5-18 (1997)
[28] Hall, A. R., Generalized Method of Moments. Generalized Method of Moments, Advanced Texts in Econometrics, xii+400 (2005), Oxford, UK: Oxford University Press, Oxford, UK · Zbl 1076.62118
[29] Nualart, D., Fractional Brownian motion: stochastic calculus and applications, International Congress of Mathematicians. Vol. III, 1541-1562 (2006), Zürich, Switzerland: European Mathematical Society, Zürich, Switzerland · Zbl 1102.60033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.