Zhang, Huina; Gao, Wenjie Existence and uniqueness results for a coupled system of nonlinear fractional differential equations with antiperiodic boundary conditions. (English) Zbl 1470.34034 Abstr. Appl. Anal. 2014, Article ID 463517, 7 p. (2014). Summary: This paper studies the existence and uniqueness of solutions for a coupled system of nonlinear fractional differential equations of order \(\alpha,\beta\in(4,5]\) with antiperiodic boundary conditions. Our results are based on the nonlinear alternative of Leray-Schauder type and the contraction mapping principle. Two illustrative examples are also presented. Cited in 3 Documents MSC: 34A08 Fractional ordinary differential equations 34B15 Nonlinear boundary value problems for ordinary differential equations × Cite Format Result Cite Review PDF Full Text: DOI OA License References: [1] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications (1993), Yverdon, Switzerland: Gordon and Breach Science Publishers, Yverdon, Switzerland · Zbl 0818.26003 [2] Podlubny, I., Fractional Differential Equations (1999), San Diego, Calif, USA: Academic Press, San Diego, Calif, USA · Zbl 0918.34010 [3] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204 (2006), Amsterdam, The Netherlands: Elsevier Science, Amsterdam, The Netherlands · Zbl 1092.45003 [4] Sabatier, J.; Agrawal, O. P.; Machado, J. A. T., Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering (2007), Dordrecht, The Netherlands: Springer, Dordrecht, The Netherlands · Zbl 1116.00014 [5] Alsaedi, A.; Ahmad, B.; Assolami, A., On antiperiodic boundary value problems for higher-order fractional differential equations, Abstract and Applied Analysis, 2012 (2012) · Zbl 1251.34009 · doi:10.1155/2012/325984 [6] Chang, Y.-K.; Nieto, J. J., Some new existence results for fractional differential inclusions with boundary conditions, Mathematical and Computer Modelling, 49, 3-4, 605-609 (2009) · Zbl 1165.34313 · doi:10.1016/j.mcm.2008.03.014 [7] Bai, Z.; Sun, W.; Zhang, W., Positive solutions for boundary value problems of singular fractional differential equations, Abstract and Applied Analysis, 2013 (2013) · Zbl 1303.34018 · doi:10.1155/2013/162418 [8] Bai, Z.; Lü, H., Positive solutions for boundary value problem of nonlinear fractional differential equation, Journal of Mathematical Analysis and Applications, 311, 2, 495-505 (2005) · Zbl 1079.34048 · doi:10.1016/j.jmaa.2005.02.052 [9] Agarwal, R. P.; Benchohra, M.; Hamani, S., A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Applicandae Mathematicae, 109, 3, 973-1033 (2010) · Zbl 1198.26004 · doi:10.1007/s10440-008-9356-6 [10] Agarwal, R. P.; Belmekki, M.; Benchohra, M., A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative, Advances in Difference Equations, 2009 (2009) · Zbl 1182.34103 · doi:10.1155/2009/981728 [11] Xu, X.; Jiang, D.; Yuan, C., Multiple positive solutions to singular positone and semipositone Dirichlet-type boundary value problems of nonlinear fractional differential equations, Nonlinear Analysis: Theory, Methods & Applications, 74, 16, 5685-5696 (2011) · Zbl 1226.34007 · doi:10.1016/j.na.2011.05.055 [12] Bai, C.-Z.; Fang, J.-X., The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations, Applied Mathematics and Computation, 150, 3, 611-621 (2004) · Zbl 1061.34001 · doi:10.1016/S0096-3003(03)00294-7 [13] Xu, X.; Jiang, D.; Yuan, C., Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation, Nonlinear Analysis: Theory, Methods & Applications, 71, 10, 4676-4688 (2009) · Zbl 1178.34006 · doi:10.1016/j.na.2009.03.030 [14] Wang, G.; Ahmad, B.; Zhang, L., Existence results for nonlinear fractional differential equations with closed boundary conditions and impulses, Advances in Difference Equations, 2012, article 169 (2012) · Zbl 1377.34016 · doi:10.1186/1687-1847-2012-169 [15] Gafiychuk, V.; Datsko, B.; Meleshko, V.; Blackmore, D., Analysis of the solutions of coupled nonlinear fractional reaction-diffusion equations, Chaos, Solitons & Fractals, 41, 3, 1095-1104 (2009) · Zbl 1198.35123 · doi:10.1016/j.chaos.2008.04.039 [16] Chen, Y.; Chen, D.; Lv, Z., The existence results for a coupled system of nonlinear fractional differential equations with multi-point boundary conditions, Bulletin of the Iranian Mathematical Society, 38, 3, 607-624 (2012) · Zbl 1298.34011 [17] Ahmad, B.; Nieto, J. J., Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Computers and Mathematics with Applications, 58, 9, 1838-1843 (2009) · Zbl 1205.34003 · doi:10.1016/j.camwa.2009.07.091 [18] Ahmad, B.; Otero-Espinar, V., Existence of solutions for fractional differential inclusions with antiperiodic boundary conditions, Boundary Value Problems, 2009 (2009) · Zbl 1172.34004 · doi:10.1155/2009/625347 [19] Agarwal, R. P.; Ahmad, B., Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions, Computers and Mathematics with Applications, 62, 3, 1200-1214 (2011) · Zbl 1228.34009 · doi:10.1016/j.camwa.2011.03.001 [20] Ahmad, B., Existence of solutions for fractional differential equations of order \(q∈\) (2,3] with anti-periodic boundary conditions, Journal of Applied Mathematics and Computing, 34, 1-2, 385-391 (2010) · Zbl 1216.34003 · doi:10.1007/s12190-009-0328-4 [21] Agarwal, R. P.; Ahmad, B., Existence of solutions for impulsive anti-periodic boundary value problems of fractional semilinear evolution equations, Dynamics of Continuous, Discrete and Impulsive Systems A, 18, 4, 457-470 (2011) · Zbl 1226.26005 [22] Wang, G.; Ahmad, B.; Zhang, L., Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order, Nonlinear Analysis: Theory, Methods & Applications, 74, 3, 792-804 (2011) · Zbl 1214.34009 · doi:10.1016/j.na.2010.09.030 [23] Ntouyas, S. K.; Obaid, M., A coupled system of fractional differential equations with nonlocal integral boundary conditions, Advances in Difference Equations, 2012, article 130 (2012) · Zbl 1350.34010 · doi:10.1186/1687-1847-2012-130 [24] Granas, A.; Dugundji, J., Fixed Point Theory (2003), New York, NY, USA: Springer, New York, NY, USA · Zbl 1025.47002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.