Kim, Sun Kwang; Lee, Han Ju; Martín, Miguel On the Bishop-Phelps-Bollobás property for numerical radius. (English) Zbl 1473.46011 Abstr. Appl. Anal. 2014, Article ID 479208, 15 p. (2014). Summary: We study the Bishop-Phelps-Bollobás property for numerical radius (in short, BPBp-nu) and find sufficient conditions for Banach spaces to ensure the BPBp-nu. Among other results, we show that \(L_1 \left(\mu\right)\)-spaces have this property for every measure \(\mu\). On the other hand, we show that every infinite-dimensional separable Banach space can be renormed to fail the BPBp-nu. In particular, this shows that the Radon-Nikodým property (even reflexivity) is not enough to get BPBp-nu. Cited in 1 ReviewCited in 6 Documents MSC: 46B04 Isometric theory of Banach spaces 47A12 Numerical range, numerical radius Keywords:Bishop-Phelps-Bollobás property; numerical radius PDF BibTeX XML Cite \textit{S. K. Kim} et al., Abstr. Appl. Anal. 2014, Article ID 479208, 15 p. (2014; Zbl 1473.46011) Full Text: DOI arXiv References: [1] Bonsall, F. F.; Duncan, J., Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras. Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Mathematical Society Lecture Note Series 2, 2 (1971), London, UK: Cambridge University Press, London, UK · Zbl 0207.44802 [2] Bonsall, F. F.; Duncan, J., Numerical Ranges II (1973), London, UK: Cambridge University Press, London, UK · Zbl 0262.47001 [3] Sims, B., On numerical range and its applications to Banach algebras [Ph.D. thesis] (1972), New South Wales, Australia: University of Newcastle, New South Wales, Australia [4] Berg, I. D.; Sims, B., Denseness of operators which attain their numerical radius, Australian Mathematical Society A, 36, 1, 130-133 (1984) · Zbl 0561.47004 [5] Cardassi, C. S., Density of numerical radius attaining operators on some reflexive spaces, Bulletin of the Australian Mathematical Society, 31, 1, 1-3 (1985) · Zbl 0557.47003 [6] Cardassi, C. S., Numerical radius attaining operators, Banach Spaces (Columbia, Mo., 1984). Banach Spaces (Columbia, Mo., 1984), Lecture Notes in Mathematics, 1166, 11-14 (1985), Berlin, Germany: Springer, Berlin, Germany [7] Cardassi, C. S., Numerical radius-attaining operators on \(C(K)\), Proceedings of the American Mathematical Society, 95, 4, 537-543 (1985) · Zbl 0602.47020 [8] Acosta, M. D., Operadores que alcanzan su radio numerico [Ph.D. thesis] (1990), Granada, Spain: Universidad de Granada, Granada, Spain [9] Acosta, M. D.; Payá, R., Numerical radius attaining operators and the Radon-Nikodým property, The Bulletin of the London Mathematical Society, 25, 1, 67-73 (1993) · Zbl 0739.47004 [10] Payá, R., A counterexample on numerical radius attaining operators, Israel Journal of Mathematics, 79, 1, 83-101 (1992) · Zbl 0784.47005 [11] Choi, Y. S.; Kim, S. G., Norm or numerical radius attaining multilinear mappings and polynomials, Journal of the London Mathematical Society, 54, 1, 135-147 (1996) · Zbl 0858.47005 [12] Acosta, M. D.; Becerra Guerrero, J.; Ruiz Galán, M., Numerical-radius-attaining polynomials, The Quarterly Journal of Mathematics, 54, 1, 1-10 (2003) · Zbl 1074.46026 [13] Acosta, M. D.; Kim, S. G., Denseness of holomorphic functions attaining their numerical radii, Israel Journal of Mathematics, 161, 373-386 (2007) · Zbl 1140.46007 [14] Kim, S. G.; Lee, H. J., Numerical peak holomorphic functions on Banach spaces, Journal of Mathematical Analysis and Applications, 364, 2, 437-452 (2010) · Zbl 1197.46020 [15] Acosta, M. D.; Aron, R. M.; García, D.; Maestre, M., The Bishop-Phelps-Bollobás theorem for operators, Journal of Functional Analysis, 254, 11, 2780-2799 (2008) · Zbl 1152.46006 [16] Guirao, A. J.; Kozhushkina, O., The Bishop-Phelps-Bollobás property for numerical radius in \(\ell_1(C)\), Studia Mathematica, 218, 1, 41-54 (2013) · Zbl 1285.47008 [17] Falcó, J., The Bishop-Phelps-Bollobas property for numerical radius on \(L_1\), Journal of Mathematical Analysis and Applications, 414, 1, 125-133 (2014) · Zbl 1332.46012 [18] Aviles, A.; Guirao, A. J.; Rodriguez, J., On the Bishop-Phelps-Bollobas property for numerical radius in \(C \left(K\right)\)-spaces · Zbl 1319.46005 [19] Aron, R. M.; Choi, Y. S.; Kim, S. K.; Lee, H. J.; Martin, M., The Bishop-Phelps-Bollobas version of Lindenstrauss properties A and B · Zbl 1331.46008 [20] Kadets, V.; Martín, M.; Payá, R., Recent progress and open questions on the numerical index of Banach spaces, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales A, 100, 1-2, 155-182 (2006) · Zbl 1111.46007 [21] Martín, M.; Merí, J.; Popov, M., On the numerical index of real \(L_p(\mu)\)-spaces, Israel Journal of Mathematics, 184, 183-192 (2011) · Zbl 1257.46008 [22] Iwanik, A., Norm attaining operators on Lebesgue spaces, Pacific Journal of Mathematics, 83, 2, 381-386 (1979) · Zbl 0414.47028 [23] Schaefer, H. H., Banach Lattices and Positive Operators (1974), New York, NY, USA: Springer, New York, NY, USA · Zbl 0296.47023 [24] Duncan, J.; McGregor, C. M.; Pryce, J. D.; White, A. J., The numerical index of a normed space, Journal of the London Mathematical Society. Second Series, 2, 481-488 (1970) · Zbl 0197.10402 [25] Choi, Y. S.; Kim, S. K.; Lee, H. J.; Martin, M., The Bishop-Phelps-Bollobas theorem for operators on \(L_1 \left(\mu\right)\) [26] Lacey, H. E., The Isometric Theory of Classical Banach Spaces (1974), New York, NY, USA: Springer, New York, NY, USA · Zbl 0285.46024 [27] Godefroy, G., Universal spaces for strictly convex Banach spaces, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales A, 100, 1-2, 137-146 (2006) · Zbl 1118.46019 [28] Finet, C.; Martín, M.; Payá, R., Numerical index and renorming, Proceedings of the American Mathematical Society, 131, 3, 871-877 (2003) · Zbl 1016.46011 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.