×

Coupled coincidence points for mixed monotone random operators in partially ordered metric spaces. (English) Zbl 1469.54122

Summary: The aim of this work is to prove some coupled random coincidence theorems for a pair of compatible mixed monotone random operators satisfying weak contractive conditions. These results are some random versions and extensions of results of E. Karapınar et al. [Arab. J. Math. 1, No. 3, 329–339 (2012; Zbl 1253.54044)]. Our results generalize the results of W. Shatanawi and Z. Mustafa [Mat. Vesn. 64, No. 2, 139–146 (2012; Zbl 1289.54160)].

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
54E40 Special maps on metric spaces
54F05 Linearly ordered topological spaces, generalized ordered spaces, and partially ordered spaces

References:

[1] Itoh, S., A random fixed point theorem for a multivalued contraction mapping, Pacific Journal of Mathematics, 68, 1, 85-90 (1977) · Zbl 0335.54036 · doi:10.2140/pjm.1977.68.85
[2] Lin, T.-C., Random approximations and random fixed point theorems for non-self-maps, Proceedings of the American Mathematical Society, 103, 4, 1129-1135 (1988) · Zbl 0676.47041 · doi:10.2307/2047097
[3] Abbas, M.; Hussain, N.; Rhoades, B. E., Coincidence point theorems for multivalued \(f\)-weak contraction mappings and applications, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matematicas, 105, 2, 261-272 (2011) · Zbl 1296.54048 · doi:10.1007/s13398-011-0036-4
[4] Agarwal, R. P.; O’Regan, D.; Sambandham, M., Random and deterministic fixed point theory for generalized contractive maps, Applicable Analysis, 83, 7, 711-725 (2004) · Zbl 1088.47044 · doi:10.1080/00036810410001657206
[5] Beg, I.; Khan, A. R.; Hussain, N., Approximation of \(*\)-nonexpansive random multivalued operators on Banach spaces, Journal of the Australian Mathematical Society, 76, 1, 51-66 (2004) · Zbl 1072.47055 · doi:10.1017/S1446788700008697
[6] Ćirić, L. B.; Ume, J. S.; Ješić, S. N., On random coincidence and fixed points for a pair of multivalued and single-valued mappings, Journal of Inequalities and Applications, 2006 (2006) · Zbl 1129.47312 · doi:10.1155/JIA/2006/81045
[7] Huang, N.-J., A principle of randomization for coincidence points with applications, Applied Mathematics Letters, 12, 2, 107-113 (1999) · Zbl 0945.60057 · doi:10.1016/S0893-9659(98)00157-8
[8] Khan, A. R.; Hussain, N., Random coincidence point theorem in Fréchet spaces with applications, Stochastic Analysis and Applications, 22, 1, 155-167 (2004) · Zbl 1036.60058 · doi:10.1081/SAP-120028028
[9] Agarwal, R. P.; El-Gebeily, M. A.; O’Regan, D., Generalized contractions in partially ordered metric spaces, Applicable Analysis, 87, 1, 109-116 (2008) · Zbl 1140.47042 · doi:10.1080/00036810701556151
[10] Hussain, N.; Alotaibi, A., Coupled coincidences for multi-valued contractions in partially ordered metric spaces, Fixed Point Theory and Applications, 2011, article 82 (2011) · Zbl 1288.54035
[11] Hussain, N.; Latif, A.; Shah, M. H., Coupled and tripled coincidence point results without compatibility, Fixed Point Theory and Applications, 2012, article 77 (2012) · Zbl 1457.54039 · doi:10.1186/1687-1812-2012-77
[12] Lakshmikantham, V.; Vatsala, A. S., General uniqueness and monotone iterative technique for fractional differential equations, Applied Mathematics Letters, 21, 8, 828-834 (2008) · Zbl 1161.34031 · doi:10.1016/j.aml.2007.09.006
[13] Luong, N. V.; Thuan, N. X., Coupled fixed points in partially ordered metric spaces and application, Nonlinear Analysis: Theory, Methods & Applications, 74, 3, 983-992 (2011) · Zbl 1202.54036 · doi:10.1016/j.na.2010.09.055
[14] Nieto, J. J.; Rodríguez-López, R., Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22, 3, 223-239 (2005) · Zbl 1095.47013 · doi:10.1007/s11083-005-9018-5
[15] Ran, A. C. M.; Reurings, M. C. B., A fixed point theorem in partially ordered sets and some applications to matrix equations, Proceedings of the American Mathematical Society, 132, 5, 1435-1443 (2004) · Zbl 1060.47056 · doi:10.1090/S0002-9939-03-07220-4
[16] Lakshmikantham, V.; \'Cirić, L., Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysi: Theory, Methods & Applications, 70, 12, 4341-4349 (2009) · Zbl 1176.54032 · doi:10.1016/j.na.2008.09.020
[17] Karapınar, E.; Van Luong, N.; Thuan, N. X., Coupled coincidence points for mixed monotone operators in partially ordered metric spaces, Arabian Journal of Mathematics, 1, 3, 329-339 (2012) · Zbl 1253.54044 · doi:10.1007/s40065-012-0027-0
[18] \'Cirić, L.; Lakshmikantham, V., Coupled random fixed point theorems for nonlinear contractions in partially ordered metric spaces, Stochastic Analysis and Applications, 27, 6, 1246-1259 (2009) · Zbl 1176.54030 · doi:10.1080/07362990903259967
[19] Zhu, X.-H.; Xiao, J.-Z., Random periodic point and fixed point results for random monotone mappings in ordered Polish spaces, Fixed Point Theory and Applications, 2010 (2010) · Zbl 1206.54070
[20] Alotaibi, A.; Alsulami, S. M., Coupled coincidence points for monotone operators in partially ordered metric spaces, Fixed Point Theory and Applications, 2011, article 44 (2011) · Zbl 1315.47042
[21] Shatanawi, W.; Mustafa, Z., On coupled random fixed point results in partially ordered metric spaces, Matematichki Vesnik, 64, 2, 139-146 (2012) · Zbl 1289.54160
[22] Hussain, N.; Latif, A.; Shafqat, N., Weak contractive inequalities and compatible mixed monotone random operators in ordered metric spaces, Journal of Inequalities and Applications, 2012, article 257 (2012) · Zbl 1278.54032 · doi:10.1186/1029-242X-2012-257
[23] Wagner, D. H., Survey of measurable selection theorems, SIAM Journal on Control and Optimization, 15, 5, 859-903 (1977) · Zbl 0407.28006 · doi:10.1137/0315056
[24] Rockafellar, R. T., Measurable dependence of convex sets and functions on parameters, Journal of Mathematical Analysis and Applications, 28, 4-25 (1969) · Zbl 0202.33804 · doi:10.1016/0022-247X(69)90104-8
[25] Himmelberg, C. J., Measurable relations, Fundamenta Mathematicae, 87, 53-72 (1975) · Zbl 0296.28003
[26] McShane, E. J.; Warfield,, R. B., On Filippov’s implicit functions lemma, Proceedings of the American Mathematical Society, 18, 41-47 (1967) · Zbl 0145.34403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.