×

Analytical investigation of laminar viscoelastic fluid flow over a wedge in the presence of buoyancy force effects. (English) Zbl 1470.76020

Summary: An analytical strong method, the homotopy analysis method (HAM), is employed to study the mixed convective heat transfer in an incompressible steady two-dimensional viscoelastic fluid flow over a wedge in the presence of buoyancy effects. The two-dimensional boundary-layer governing partial differential equations (PDEs) are derived by the consideration of Boussinesq approximation. By the use of similarity transformation, we have obtained the ordinary differential nonlinear (ODE) forms of momentum and energy equations. The highly nonlinear forms of momentum and energy equations are solved analytically. The effects of different involved parameters such as viscoelastic parameter, Prandtl number, buoyancy parameter, and the wedge angle parameter, which is related to the exponent \(m\) of the external velocity, on velocity and temperature distributions are plotted and discussed. An excellent agreement can be seen between the results and the previously published papers for \(f''(0)\) and \(\theta'(0)\) in some of the tables and figures of the paper for velocity and temperature profiles for various values of viscoelastic parameter and Prandtl number. The effects of buoyancy parameter on the velocity and temperature distributions are completely illustrated in detail.

MSC:

76A10 Viscoelastic fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Su, X.; Zheng, L.; Zhang, X.; Zhang, J., MHD mixed convective heat transfer over a permeable stretching wedge with thermal radiation and ohmic heating, Chemical Engineering Science, 78, 1-8 (2012)
[2] Li, D.; Labropulu, F.; Pop, I., Mixed convection flow of a viscoelastic fluid near the orthogonal stagnation-point on a vertical surface, International Journal of Thermal Sciences, 50, 9, 1698-1705 (2011) · doi:10.1016/j.ijthermalsci.2011.04.002
[3] Hiemenz, K., Die Grenzschicht an einem in den Gleichförmigen Flüssigkeitsstrom Eingetauchten Geraden Kreiszylinder (1911), Berlin, Germany: Weber, Berlin, Germany
[4] Dash, G. C.; Behera, S. C., Laminar free convection stagnation heat transfer of a viscoelastic liquid from an isothermal cylinder with an internal source and/or sink, Wear, 81, 2, 197-208 (1982)
[5] Nazar, R.; Amin, N.; Filip, D.; Pop, I., Stagnation point flow of a micropolar fluid towards a stretching sheet, International Journal of Non-Linear Mechanics, 39, 7, 1227-1235 (2004) · Zbl 1348.76156 · doi:10.1016/j.ijnonlinmec.2003.08.007
[6] Abel, M. S.; Sanjayanand, E.; Nandeppanavar, M. M., Viscoelastic MHD flow and heat transfer over a stretching sheet with viscous and ohmic dissipations, Communications in Nonlinear Science and Numerical Simulation, 13, 9, 1808-1821 (2008) · Zbl 1221.76025 · doi:10.1016/j.cnsns.2007.04.007
[7] Akbar, N. S.; Nadeem, S., Analytical and numerical solutions of peristaltic flow of williamson fluid model in an endoscope, Journal of Mechanics in Medicine and Biology, 11, 4, 941-957 (2011) · doi:10.1142/S0219519411003910
[8] Nadeem, S.; Akbar, N. S., Exact and numerical simulation of peristaltic flow of a non-Newtonian fluid with inclined magnetic field in an endoscope, International Journal for Numerical Methods in Fluids, 66, 7, 919-934 (2011) · Zbl 1432.76031 · doi:10.1002/fld.2295
[9] Nadeem, S.; Akbar, N. S., Numerical solutions of peristaltic flow of Williamson fluid with radially varying MHD in an endoscope, International Journal for Numerical Methods in Fluids, 66, 2, 212-220 (2011) · Zbl 1394.76155 · doi:10.1002/fld.2253
[10] Nadeem, S.; Akbar, N. S., Numerical analysis of peristaltic transport of a tangent hyperbolic fluid in an endoscope, Journal of Aerospace Engineering, 24, 3, 309-317 (2011) · doi:10.1061/(ASCE)AS.1943-5525.0000071
[11] Ariel, P. D., A numerical algorithm for computing the stagnation point flow of a second grade fluid with/without suction, Journal of Computational and Applied Mathematics, 59, 1, 9-24 (1995) · Zbl 0831.76053 · doi:10.1016/0377-0427(94)00012-P
[12] Mahapatra, T. R.; Gupta, A. S., Stagnation-point flow of a viscoelastic fluid towards a stretching surface, International Journal of Non-Linear Mechanics, 39, 5, 811-820 (2004) · Zbl 1221.76035 · doi:10.1016/S0020-7462(03)00044-1
[13] Erfani, E.; Rashidi, M. M.; Parsa, A. B., The modified differential transform method for solving off-centered stagnation flow toward a rotating disc, International Journal of Computational Methods, 7, 4, 655-670 (2010) · Zbl 1270.76053 · doi:10.1142/S0219876210002404
[14] Akbar, N. S.; Nadeem, S.; Hayat, T.; Hendi, A. A., Analytical and numerical analysis of Vogel’s model of viscosity on the peristaltic flow of Jeffrey fluid, Journal of Aerospace Engineering, 25, 1, 64-70 (2012) · doi:10.1061/(ASCE)AS.1943-5525.0000097
[15] Ishak, A.; Nazar, R.; Arifin, N. M.; Pop, I., Mixed convection of the stagnation-point flow towards a stretching vertical permeable sheet, Malaysian Journal of Mathematical Sciences, 1, 2, 217-226 (2007)
[16] Rashidi, M. M.; Ganji, D. D.; Sadri, S. M., New analytical solution of stagnation point flow in a porous medium, Journal of Porous Media, 14, 12, 1125-1135 (2011) · doi:10.1615/JPorMedia.v14.i12.70
[17] Kasim, A. R. M.; Admon, M. A.; Shafie, S., Free convection boundary layer flow of a viscoelastic fluid in the presence of heat generation, World Academy of Science, Engineering and Technology, 75, 492-499 (2011)
[18] Aman, F.; Ishak, A.; Pop, I., Mixed convection boundary layer flow near stagnation-point on vertical surface with slip, Applied Mathematics and Mechanics, 32, 12, 1599-1606 (2011) · Zbl 1382.76054 · doi:10.1007/s10483-011-1526-x
[19] Seshadri, R., Unsteady three-dimensional stagnation point flow of a viscoelastic fluid, International Journal of Engineering Science, 35, 5, 445-454 (1997) · Zbl 0899.76049 · doi:10.1016/S0020-7225(96)00095-X
[20] Turkyilmazoglu, M., The analytical solution of mixed convection heat transfer and fluid flow of a MHD viscoelastic fluid over a permeable stretching surface, International Journal of Mechanical Sciences, 77, 263-268 (2013)
[21] Bhattacharyya, K.; Layek, G. C., Effects of suction/blowing on steady boundary layer stagnation-point flow and heat transfer towards a shrinking sheet with thermal radiation, International Journal of Heat and Mass Transfer, 54, 1-3, 302-307 (2011) · Zbl 1205.80011 · doi:10.1016/j.ijheatmasstransfer.2010.09.043
[22] Bachok, N.; Ishak, A.; Pop, I., Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet, Physics Letters A: General, Atomic and Solid State Physics, 374, 40, 4075-4079 (2010) · Zbl 1238.76018 · doi:10.1016/j.physleta.2010.08.032
[23] Layek, G. C.; Mukhopadhyay, S.; Samad, S. A., Heat and mass transfer analysis for boundary layer stagnation-point flow towards a heated porous stretching sheet with heat absorption/generation and suction/blowing, International Communications in Heat and Mass Transfer, 34, 3, 347-356 (2007) · doi:10.1016/j.icheatmasstransfer.2006.11.011
[24] Turkyilmazoglu, M., Multiple solutions of heat and mass transfer of MHD slip flow for the viscoelastic fluid over a stretching sheet, International Journal of Thermal Sciences, 50, 11, 2264-2276 (2011) · doi:10.1016/j.ijthermalsci.2011.05.014
[25] Turkyilmazoglu, M., Multiple solutions of hydromagnetic permeable flow and heat for viscoelastic fluid, Journal of Thermophysics and Heat Transfer, 25, 4, 595-605 (2011) · doi:10.2514/1.T3749
[26] Turkyilmazoglu, M., Analytic heat and mass transfer of the mixed hydrodynamic/thermal slip MHD viscous flow over a stretching sheet, International Journal of Mechanical Sciences, 53, 10, 886-896 (2011) · doi:10.1016/j.ijmecsci.2011.07.012
[27] Chamkha, A. J.; Mujtaba, M.; Quadri, A.; Issa, C., Thermal radiation effects on MHD forced convection flow adjacent to a non-isothermal wedge in the presence of a heat source or sink, Heat and Mass Transfer, 39, 4, 305-312 (2003)
[28] Kandasamy, R.; Muhaimin, I.; Khamis, A. B., Thermophoresis and variable viscosity effects on MHD mixed convective heat and mass transfer past a porous wedge in the presence of chemical reaction, Heat and Mass Transfer, 45, 6, 703-712 (2009) · doi:10.1007/s00231-008-0468-3
[29] Hossain, M. A.; Bhowmick, S.; Gorla, R. S. R., Unsteady mixed-convection boundary layer flow along a symmetric wedge with variable surface temperature, International Journal of Engineering Science, 44, 10, 607-620 (2006) · Zbl 1213.76175 · doi:10.1016/j.ijengsci.2006.04.007
[30] Liao, S. J., Beyond Perturbation: Introduction to the Homotopy Analysis Method, 2 (2004), Boca Raton, Fla, USA: Chapman & Hall/CRC, Boca Raton, Fla, USA · Zbl 1051.76001
[31] Liao, S. J., On the homotopy analysis method for nonlinear problems, Applied Mathematics and Computation, 147, 2, 499-513 (2004) · Zbl 1086.35005 · doi:10.1016/S0096-3003(02)00790-7
[32] Rashidi, M. M.; Ashraf, M.; Rostami, B.; Rastegari, M. T.; Bashir, S., Mixed convection boundary-layer flow of a micro polar fluid towards a heated shrinking sheet by homotopy analysis method, Thermal Science (2013) · doi:10.2298/TSCI130212096R
[33] Mustafa, M.; Hayat, T.; Pop, I.; Asghar, S.; Obaidat, S., Stagnation-point flow of a nanofluid towards a stretching sheet, International Journal of Heat and Mass Transfer, 54, 25-26, 5588-5594 (2011) · Zbl 1231.80023 · doi:10.1016/j.ijheatmasstransfer.2011.07.021
[34] Dinarvand, S.; Doosthoseini, A.; Doosthoseini, E.; Rashidi, M. M., Series solutions for unsteady laminar MHD flow near forward stagnation point of an impulsively rotating and translating sphere in presence of buoyancy forces, Nonlinear Analysis: Real World Applications, 11, 2, 1159-1169 (2010) · Zbl 1253.76129 · doi:10.1016/j.nonrwa.2009.02.009
[35] Hayat, T.; Abbas, Z.; Sajid, M., MHD stagnation-point flow of an upper-convected Maxwell fluid over a stretching surface, Chaos, Solitons & Fractals, 39, 2, 840-848 (2009) · Zbl 1197.76006 · doi:10.1016/j.chaos.2007.01.067
[36] Nourbakhsh, S. H.; Zanoosi, A. A. P.; Shateri, A. R., Analytical solution for off-centered stagnation flow towards a rotating disc problem by homotopy analysis method with two auxiliary parameters, Communications in Nonlinear Science and Numerical Simulation, 16, 7, 2772-2787 (2011) · Zbl 1221.76059 · doi:10.1016/j.cnsns.2010.10.018
[37] Rashidi, M. M.; Dinarvand, S., Purely analytic approximate solutions for steady three-dimensional problem of condensation film on inclined rotating disk by homotopy analysis method, Nonlinear Analysis: Real World Applications, 10, 4, 2346-2356 (2009) · Zbl 1163.34307 · doi:10.1016/j.nonrwa.2008.04.018
[38] Rashidi, M. M.; Hayat, T.; Erfani, E.; Pour, S. A. M.; Hendi, A. A., Simultaneous effects of partial slip and thermal-diffusion and diffusion-thermo on steady MHD convective flow due to a rotating disk, Communications in Nonlinear Science and Numerical Simulation, 16, 11, 4303-4317 (2011) · Zbl 1419.76712 · doi:10.1016/j.cnsns.2011.03.015
[39] Rashidi, M. M.; Pour, S. A. M.; Hayat, T.; Obaidat, S., Analytic approximate solutions for steady flow over a rotating disk in porous medium with heat transfer by homotopy analysis method, Computers & Fluids, 54, 1, 1-9 (2012) · Zbl 1291.76338 · doi:10.1016/j.compfluid.2011.08.001
[40] Turkyilmazoglu, M., Purely analytic solutions of magnetohydrodynamic swirling boundary layer flow over a porous rotating disk, Computers & Fluids, 39, 5, 793-799 (2010) · Zbl 1242.76368 · doi:10.1016/j.compfluid.2009.12.007
[41] Turkyilmazoglu, M., Analytic approximate solutions of rotating disk boundary layer flow subject to a uniform suction or injection, International Journal of Mechanical Sciences, 52, 12, 1735-1744 (2010) · doi:10.1016/j.ijmecsci.2010.09.007
[42] Xinhui, S.; Liancun, Z.; Xinxin, Z.; Xinyi, S., Homotopy analysis method for the asymmetric laminar flow and heat transfer of viscous fluid between contracting rotating disks, Applied Mathematical Modelling, 36, 4, 1806-1820 (2012) · Zbl 1243.76077 · doi:10.1016/j.apm.2011.09.010
[43] Hayat, T.; Abbas, Z.; Pop, I., Mixed convection in the stagnation point flow adjacent to a vertical surface in a viscoelastic fluid, International Journal of Heat and Mass Transfer, 51, 11-12, 3200-3206 (2008) · Zbl 1144.80315 · doi:10.1016/j.ijheatmasstransfer.2007.05.032
[44] Hayat, T.; Mustafa, M.; Pop, I., Heat and mass transfer for Soret and Dufour’s effect on mixed convection boundary layer flow over a stretching vertical surface in a porous medium filled with a viscoelastic fluid, Communications in Nonlinear Science and Numerical Simulation, 15, 5, 1183-1196 (2010) · Zbl 1221.80005 · doi:10.1016/j.cnsns.2009.05.062
[45] Liao, S. J., An optimal homotopy-analysis approach for strongly nonlinear differential equations, Communications in Nonlinear Science and Numerical Simulation, 15, 8, 2003-2016 (2010) · Zbl 1222.65088 · doi:10.1016/j.cnsns.2009.09.002
[46] Liao, S. J., Advances in the Homotopy Analysis Method (2014), World Scientific · Zbl 1302.00066
[47] Rashidi, M. M.; Pour, S. A. M.; Abbasbandy, S., Analytic approximate solutions for heat transfer of a micropolar fluid through a porous medium with radiation, Communications in Nonlinear Science and Numerical Simulation, 16, 4, 1874-1889 (2011) · doi:10.1016/j.cnsns.2010.08.016
[48] Ishak, A.; Nazar, R.; Pop, I., MHD mixed convection boundary layer flow towards a stretching vertical surface with constant wall temperature, International Journal of Heat and Mass Transfer, 53, 23-24, 5330-5334 (2010) · Zbl 1201.80022 · doi:10.1016/j.ijheatmasstransfer.2010.06.053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.