Ibrahim, Mohd Asrul Hery; Mamat, Mustafa; Leong, Wah June The hybrid BFGS-CG method in solving unconstrained optimization problems. (English) Zbl 1470.90159 Abstr. Appl. Anal. 2014, Article ID 507102, 6 p. (2014). Summary: In solving large scale problems, the quasi-Newton method is known as the most efficient method in solving unconstrained optimization problems. Hence, a new hybrid method, known as the BFGS-CG method, has been created based on these properties, combining the search direction between conjugate gradient methods and quasi-Newton methods. In comparison to standard BFGS methods and conjugate gradient methods, the BFGS-CG method shows significant improvement in the total number of iterations and CPU time required to solve large scale unconstrained optimization problems. We also prove that the hybrid method is globally convergent. Cited in 1 Document MSC: 90C53 Methods of quasi-Newton type 90C30 Nonlinear programming Software:minpack; Genocop; SCALCG PDF BibTeX XML Cite \textit{M. A. H. Ibrahim} et al., Abstr. Appl. Anal. 2014, Article ID 507102, 6 p. (2014; Zbl 1470.90159) Full Text: DOI References: [1] Armijo, L., Minimization of functions having Lipschitz continuous first partial derivatives, Pacific Journal of Mathematics, 16, 1-3 (1966) · Zbl 0202.46105 [2] Wolfe, P., Convergence conditions for ascent methods, SIAM Review, 11, 2, 226-235 (1969) · Zbl 0177.20603 [3] Wolfe, P., Convergence conditions for ascent methods. II: some corrections, SIAM Review, 13, 2, 185-188 (1971) · Zbl 0216.26901 [4] Goldstein, A. A., On steepest descent, Journal of the Society for Industrial and Applied Mathematics A, 3, 1, 147-151 (1965) · Zbl 0221.65094 [5] Shi, Z.-J., Convergence of quasi-Newton method with new inexact line search, Journal of Mathematical Analysis and Applications, 315, 1, 120-131 (2006) · Zbl 1093.65063 [6] Han, L.; Neumann, M., Combining quasi-Newton and Cauchy directions, International Journal of Applied Mathematics, 12, 2, 167-191 (2003) · Zbl 1042.90041 [7] Fletcher, R.; Reeves, C. M., Function minimization by conjugate gradients, The Computer Journal, 7, 2, 149-154 (1964) · Zbl 0132.11701 [8] Andrei, N., Accelerated scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization, European Journal of Operational Research, 204, 3, 410-420 (2010) · Zbl 1189.90151 [9] Polak, E.; Ribière, G., Note on the convergence of methods of conjugate directions, Revue Française d’Informatique et de Recherche Opérationnelle, 3, 35-43 (1969) · Zbl 0174.48001 [10] Shi, Z.-J.; Shen, J., Convergence of the Polak-Ribiére-Polyak conjugate gradient method, Nonlinear Analysis: Theory, Methods & Applications, 66, 6, 1428-1441 (2007) · Zbl 1120.49027 [11] Yu, G.; Guan, L.; Wei, Z., Globally convergent Polak-Ribière-Polyak conjugate gradient methods under a modified Wolfe line search, Applied Mathematics and Computation, 215, 8, 3082-3090 (2009) · Zbl 1185.65100 [12] Hestenes, M. R.; Stiefel, E., Method of conjugate gradient for solving linear equations, Journal of Research of the National Bureau of Standards, 49, 6, 409-436 (1952) · Zbl 0048.09901 [13] Ludwig, A., The Gauss-Seidel-quasi-Newton method: a hybrid algorithm for solving dynamic economic models, Journal of Economic Dynamics and Control, 31, 5, 1610-1632 (2007) · Zbl 1201.91119 [14] Luo, Y.-Z.; Tang, G.-J.; Zhou, L.-N., Hybrid approach for solving systems of nonlinear equations using chaos optimization and quasi-Newton method, Applied Soft Computing, 8, 2, 1068-1073 (2008) [15] Byrd, R. H.; Nocedal, J., A tool for the analysis of quasi-Newton methods with application to unconstrained minimization, SIAM Journal on Numerical Analysis, 26, 3, 727-739 (1989) · Zbl 0676.65061 [16] Byrd, R. H.; Nocedal, J.; Yuan, Y.-X., Global convergence of a class of quasi-Newton methods on convex problems, SIAM Journal on Numerical Analysis, 24, 5, 1171-1191 (1987) · Zbl 0657.65083 [17] Powell, M. J. D., Restart procedures for the conjugate gradient method, Mathematical Programming, 12, 1, 241-254 (1977) · Zbl 0396.90072 [18] Andrei, N., An unconstrained optimization test functions collection, Advanced Modeling and Optimization, 10, 1, 147-161 (2008) · Zbl 1161.90486 [19] Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs (1996), Berlin, Germany: Springer, Berlin, Germany · Zbl 0841.68047 [20] Moré, J. J.; Garbow, B. S.; Hillstrom, K. E., Testing unconstrained optimization software, ACM Transactions on Mathematical Software, 7, 1, 17-41 (1981) · Zbl 0454.65049 [21] Dolan, E. D.; Moré, J. J., Benchmarking optimization software with performance profiles, Mathematical Programming, 91, 2, 201-213 (2002) · Zbl 1049.90004 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.