×

Minimal wave speed of bacterial colony model with saturated functional response. (English) Zbl 1406.92075

Summary: By considering bacterium death and general functional response we develop previous model of bacterial colony which focused on the traveling speed of bacteria. The minimal wave speed for our model is expressed by parameters and the necessary and sufficient conditions for traveling wave solutions (TWSs) are given. To prove the existence of TWSs, an auxiliary system is introduced and the existence of TWSs for this auxiliary system is proved by Schauder’s fixed point theorem. The limit arguments show the existence of TWSs for original system. By introducing negative one-sided Laplace transform, we prove the nonexistence of TWSs.

MSC:

92C17 Cell movement (chemotaxis, etc.)
92D25 Population dynamics (general)
44A10 Laplace transform
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aotani, A.; Mimura, M.; Mollee, T., A model aided understanding of spot pattern formation in chemotactic E. coli colonies, Japan Journal of Industrial and Applied Mathematics, 27, 1, 5-22 (2010) · Zbl 1204.92010 · doi:10.1007/s13160-010-0011-z
[2] Banitz, T.; Johst, K.; Wick, L. Y.; Fetzer, I.; Harms, H.; Frank, K., The relevance of conditional dispersal for bacterial colony growth and biodegradation, Microbial Ecology, 63, 2, 339-347 (2012) · doi:10.1007/s00248-011-9927-3
[3] Bonachela, J. A.; Nadell, C. D.; Xavier, J. B.; Levin, S. A., Universality in bacterial colonies, Journal of Statistical Physics, 144, 2, 303-315 (2011) · Zbl 1225.82019 · doi:10.1007/s10955-011-0179-x
[4] Lega, J.; Passot, T., Hydrodynamics of bacterial colonies, Nonlinearity, 20, 1, C1-C16 (2007) · Zbl 1115.92059 · doi:10.1088/0951-7715/20/1/001
[5] Marrocco, A.; Henry, H.; Holland, I. B.; Plapp, M.; Séror, S. J.; Perthame, B., Models of self-organizing bacterial communities and comparisons with experimental observations, Mathematical Modelling of Natural Phenomena, 5, 1, 148-162 (2010) · Zbl 1184.35158 · doi:10.1051/mmnp/20105107
[6] Mimura, M.; Sakaguchi, H.; Matsushita, M., Reaction-diffusion modelling of bacterial colony patterns, Physica A, 282, 1, 283-303 (2000) · Zbl 1178.92012 · doi:10.1016/S0378-4371(00)00085-6
[7] Roy, M. K.; Banerjee, P.; Sengupta, T. K.; Dattagupta, S., Glucose induced fractal colony pattern of Bacillus thuringiensis, Journal of Theoretical Biology, 265, 3, 389-395 (2010) · Zbl 1461.92057 · doi:10.1016/j.jtbi.2010.05.016
[8] Yamazaki, Y.; Ikeda, T.; Shimada, H.; Hiramatsu, F.; Kobayashi, N.; Wakita, J.-I.; Itoh, H.; Kurosu, S.; Nakatsuchi, M.; Matsuyama, T.; Matsushita, M., Periodic growth of bacterial colonies, Physica D, 205, 1-4, 136-153 (2005) · doi:10.1016/j.physd.2004.12.013
[9] Croze, O. A.; Ferguson, G. P.; Cates, M. E.; Poon, W. C. K., Migration of chemotactic bacteria in soft agar: role of gel concentration, Biophysical Journal, 101, 3, 525-534 (2011) · doi:10.1016/j.bpj.2011.06.023
[10] Grammaticos, B.; Badoual, M.; Aubert, M., An (almost) solvable model for bacterial pattern formation, Physica D, 234, 2, 90-97 (2007) · Zbl 1293.92005 · doi:10.1016/j.physd.2007.07.002
[11] Leyva, J. F.; Málaga, C.; Plaza, R. G., The effects of nutrient chemotaxis on bacterial aggregation patterns with non-linear degenerate cross diffusion, Physica A, 392, 22, 5644-5662 (2013) · Zbl 1395.92023 · doi:10.1016/j.physa.2013.07.022
[12] Miguel, A. F., Constructal pattern formation in stony corals, bacterial colonies and plant roots under different hydrodynamics conditions, Journal of Theoretical Biology, 242, 4, 954-961 (2006) · Zbl 1447.92046 · doi:10.1016/j.jtbi.2006.05.010
[13] Nishiyama, A.; Tokihiro, T.; Badoual, M.; Grammaticos, B., Modelling the morphology of migrating bacterial colonies, Physica D, 239, 16, 1573-1580 (2010) · Zbl 1193.37135 · doi:10.1016/j.physd.2010.04.003
[14] El-Sayed, A. M. A.; Rida, S. Z.; Arafa, A. A. M., On the solutions of the generalized reaction-diffusion model for bacterial colony, Acta Applicandae Mathematicae, 110, 3, 1501-1511 (2010) · Zbl 1191.35097 · doi:10.1007/s10440-009-9523-4
[15] Torrisi, M.; Tracinà, R., Exact solutions of a reaction-diffusion systems for Proteus mirabilis bacterial colonies, Nonlinear Analysis: Real World Applications, 12, 3, 1865-1874 (2011) · Zbl 1213.35259 · doi:10.1016/j.nonrwa.2010.12.004
[16] Zhang, L., Positive steady states of an elliptic system arising from biomathematics, Nonlinear Analysis: Real World Applications, 6, 1, 83-110 (2005) · Zbl 1124.35018 · doi:10.1016/j.nonrwa.2004.07.002
[17] Feng, P.; Zhou, Z., Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony, Communications on Pure and Applied Analysis, 6, 4, 1145-1165 (2007) · Zbl 1144.34020 · doi:10.3934/cpaa.2007.6.1145
[18] Mansour, M. B. A., Traveling wave solutions of a reaction-diffusion model for bacterial growth, Physica A, 383, 2, 466-472 (2007) · doi:10.1016/j.physa.2007.04.040
[19] Mansour, M. B. A., Traveling wave solutions of a nonlinear reaction-diffusion-chemotaxis model for bacterial pattern formation, Applied Mathematical Modelling, 32, 2, 240-247 (2008) · Zbl 1134.35067 · doi:10.1016/j.apm.2006.11.013
[20] Mansour, M. B. A., Analysis of propagating fronts in a nonlinear diffusion model with chemotaxis, Wave Motion, 50, 1, 11-17 (2013) · Zbl 1360.35301 · doi:10.1016/j.wavemoti.2012.06.003
[21] Müller, J.; van Saarloos, W., Morphological instability and dynamics of fronts in bacterial growth models with nonlinear diffusion, Physical Review E, 65, 6 (2002) · doi:10.1103/PhysRevE.65.061111
[22] Satnoianu, R. A.; Maini, P. K.; Garduno, F. S.; Armitage, J. P., Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation, Discrete and Continuous Dynamical Systems B, 1, 3, 339-362 (2001) · Zbl 1021.34038 · doi:10.3934/dcdsb.2001.1.339
[23] Thanarajah, S.; Wang, H., Competition of motile and immotile bacterial strains in a petri dish, Mathematical Biosciences and Engineering, 10, 2, 399-424 (2013) · Zbl 1259.92025 · doi:10.3934/mbe.2013.10.399
[24] Wakano, J. Y.; Komoto, A.; Yamaguchi, Y., Phase transition of traveling waves in bacterial colony pattern, Physical Review E, 69, 5 (2004) · doi:10.1103/PhysRevE.69.051904
[25] Diekmann, O., Thresholds and travelling waves for the geographical spread of infection, Journal of Mathematical Biology, 6, 2, 109-130 (1978) · Zbl 0415.92020 · doi:10.1007/BF02450783
[26] Carr, J.; Chmaj, A., Uniqueness of travelling waves for nonlocal monostable equations, Proceedings of the American Mathematical Society, 132, 8, 2433-2439 (2004) · Zbl 1061.45003 · doi:10.1090/S0002-9939-04-07432-5
[27] Wang, Z.-C.; Li, W.-T.; Ruan, S., Traveling fronts in monostable equations with nonlocal delayed effects, Journal of Dynamics and Differential Equations, 20, 3, 573-607 (2008) · Zbl 1141.35058 · doi:10.1007/s10884-008-9103-8
[28] Wang, Z.-C.; Li, W.-T.; Ruan, S., Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity, Transactions of the American Mathematical Society, 361, 4, 2047-2084 (2009) · Zbl 1168.35023 · doi:10.1090/S0002-9947-08-04694-1
[29] Wang, Z.-C.; Wu, J., Travelling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed transmission, Proceedings of The Royal Society of London A, 466, 2113, 237-261 (2010) · Zbl 1195.35291 · doi:10.1098/rspa.2009.0377
[30] Zeidler, E., Nonlinear Functional Analysis and Its applications I (1986), New York, NY, USA: Springer, New York, NY, USA · Zbl 0583.47050 · doi:10.1007/978-1-4612-4838-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.