×

Impulsive problems for fractional differential equations with nonlocal boundary value conditions. (English) Zbl 1474.34036

Summary: We investigate the nonlocal boundary value problems of impulsive fractional differential equations. By Banach’s contraction mapping principle, Schaefer’s fixed point theorem, and the nonlinear alternative of Leray-Schauder type, some related new existence results are established via a new special hybrid singular type Gronwall inequality. At last, some examples are also given to illustrate the results.

MSC:

34A08 Fractional ordinary differential equations
34B37 Boundary value problems with impulses for ordinary differential equations

References:

[1] Diethelm, K., The Analysis of Fractional Differential Equations. The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics (2010) · Zbl 1215.34001
[2] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204 (2006), Amsterdam, The Netherlands: Elsevier Science, Amsterdam, The Netherlands · Zbl 1092.45003
[3] Lakshmikantham, V.; Leela, S.; Vasundhara, D. J., Theory of Fractional Dynamic Systems (2009), Cambridge, UK: Cambridge Scientific Publishers, Cambridge, UK · Zbl 1188.37002
[4] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Differential Equations (1993), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0789.26002
[5] Podlubny, I., Fractional Differential Equations. Fractional Differential Equations, Mathematics in Science and Engineering, 198 (1999), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0924.34008
[6] Tarasov, V. E., Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (2011), New York, NY, USA: Springer, New York, NY, USA
[7] Agarwal, R. P.; Benchohra, M.; Hamani, S., A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Applicandae Mathematicae, 109, 3, 973-1033 (2010) · Zbl 1198.26004 · doi:10.1007/s10440-008-9356-6
[8] Benchohra, M.; Henderson, J.; Ntouyas, S. K.; Ouahab, A., Existence results for fractional order functional differential equations with infinite delay, Journal of Mathematical Analysis and Applications, 338, 2, 1340-1350 (2008) · Zbl 1209.34096 · doi:10.1016/j.jmaa.2007.06.021
[9] Wang, J.; Zhou, Y., A class of fractional evolution equations and optimal controls, Nonlinear Analysis: Real World Applications, 12, 1, 262-272 (2011) · Zbl 1214.34010 · doi:10.1016/j.nonrwa.2010.06.013
[10] Wang, J.; Zhou, Y.; Wei, W., A class of fractional delay nonlinear integrodifferential controlled systems in Banach spaces, Communications in Nonlinear Science and Numerical Simulation, 16, 10, 4049-4059 (2011) · Zbl 1223.45007 · doi:10.1016/j.cnsns.2011.02.003
[11] Zhang, S., Existence of positive solution for some class of nonlinear fractional differential equations, Journal of Mathematical Analysis and Applications, 278, 1, 136-148 (2003) · Zbl 1026.34008 · doi:10.1016/S0022-247X(02)00583-8
[12] Zhou, Y.; Jiao, F., Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Analysis: Real World Applications, 11, 5, 4465-4475 (2010) · Zbl 1260.34017 · doi:10.1016/j.nonrwa.2010.05.029
[13] Zhou, Y.; Jiao, F.; Li, J., Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear Analysis: Theory, Methods & Applications, 71, 7-8, 3249-3256 (2009) · Zbl 1177.34084 · doi:10.1016/j.na.2009.01.202
[14] Mophou, G. M., Existence and uniqueness of mild solutions to impulsive fractional differential equations, Nonlinear Analysis: Theory, Methods & Applications, 72, 3-4, 1604-1615 (2010) · Zbl 1187.34108 · doi:10.1016/j.na.2009.08.046
[15] Tai, Z.; Wang, X., Controllability of fractional-order impulsive neutral functional infinite delay integrodifferential systems in Banach spaces, Applied Mathematics Letters, 22, 11, 1760-1765 (2009) · Zbl 1181.34078 · doi:10.1016/j.aml.2009.06.017
[16] Shu, X.; Lai, Y.; Chen, Y., The existence of mild solutions for impulsive fractional partial differential equations, Nonlinear Analysis: Theory, Methods & Applications, 74, 5, 2003-2011 (2011) · Zbl 1227.34009 · doi:10.1016/j.na.2010.11.007
[17] Zhang, X.; Huang, X.; Liu, Z., The existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delay, Nonlinear Analysis: Hybrid Systems, 4, 4, 775-781 (2010) · Zbl 1207.34101 · doi:10.1016/j.nahs.2010.05.007
[18] Bai, Z.; Lü, H., Positive solutions for boundary value problem of nonlinear fractional differential equation, Journal of Mathematical Analysis and Applications, 311, 2, 495-505 (2005) · Zbl 1079.34048 · doi:10.1016/j.jmaa.2005.02.052
[19] Jiang, D.; Yuan, C., The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application, Nonlinear Analysis. Theory, Methods & Applications, 72, 2, 710-719 (2010) · Zbl 1192.34008 · doi:10.1016/j.na.2009.07.012
[20] Benchohra, M.; Graef, J. R.; Hamani, S., Existence results for boundary value problems with non-linear fractional differential equations, Applicable Analysis, 87, 7, 851-863 (2008) · Zbl 1198.26008 · doi:10.1080/00036810802307579
[21] Daftardar-Gejji, V., Positive solutions of a system of non-autonomous fractional differential equations, Journal of Mathematical Analysis and Applications, 302, 1, 56-64 (2005) · Zbl 1064.34004 · doi:10.1016/j.jmaa.2004.08.007
[22] Zhang, S. Q., Positive solutions for boundary-value problems of nonlinear fractional differential equations, Electronic Journal of Differential Equations, 36, 1-12 (2006) · Zbl 1096.34016
[23] Li, C. F.; Luo, X. N.; Zhou, Y., Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations, Computers & Mathematics with Applications, 59, 3, 1363-1375 (2010) · Zbl 1189.34014 · doi:10.1016/j.camwa.2009.06.029
[24] Benchohra, M.; Hamani, S.; Ntouyas, S. K., Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Analysis: Theory, Methods & Applications, 71, 7-8, 2391-2396 (2009) · Zbl 1198.26007 · doi:10.1016/j.na.2009.01.073
[25] Zhong, W.; Lin, W., Nonlocal and multiple-point boundary value problem for fractional differential equations, Computers & Mathematics with Applications, 59, 3, 1345-1351 (2010) · Zbl 1189.34036 · doi:10.1016/j.camwa.2009.06.032
[26] Ahmad, B.; Sivasundaram, S., On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order, Applied Mathematics and Computation, 217, 2, 480-487 (2010) · Zbl 1207.45014 · doi:10.1016/j.amc.2010.05.080
[27] Yang, L.; Chen, H., Nonlocal boundary value problem for impulsive differential equations of fractional order, Advances in Difference Equations, 2011 (2011) · Zbl 1278.26010 · doi:10.1186/1687-2770-2012-145
[28] Guo, T.; Wei, J., Impulsive problems for fractional differential equations with boundary value conditions, Computers & Mathematics with Applications, 64, 10, 3281-3291 (2012) · Zbl 1268.34014 · doi:10.1016/j.camwa.2012.02.006
[29] Li, X.; Chen, F.; Li, X., Generalized anti-periodic boundary value problems of impulsive fractional differential equations, Communications in Nonlinear Science and Numerical Simulation, 18, 1, 28-41 (2013) · Zbl 1253.35207 · doi:10.1016/j.cnsns.2012.06.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.