×

A remark on the regularity criterion for the 3D Boussinesq equations involving the pressure gradient. (English) Zbl 1472.35312

Summary: We consider the three-dimensional Boussinesq equations and obtain a regularity criterion involving the pressure gradient in the Morrey-Companato space \(M_{p, q}\). This extends and improves the result of S. Gala [Appl. Anal. 92, No. 1, 96–103 (2013; Zbl 1284.35313)] for the Navier-Stokes equations.

MSC:

35Q35 PDEs in connection with fluid mechanics
35B65 Smoothness and regularity of solutions to PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids

Citations:

Zbl 1284.35313
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Hopf, E., Über die anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Mathematische Nachrichten, 4, 213-231 (1951) · Zbl 0042.10604
[2] Lemarié-Rieusset, P. G., Recent Developments in the Navier-Stokes Problem (2002), Boca Raton, Fla, USA: Chapman & Hall, Boca Raton, Fla, USA · Zbl 1034.35093
[3] Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Mathematica, 63, 1, 193-248 (1934) · JFM 60.0726.05
[4] Serrin, J., On the interior regularity of weak solutions of the Navier-Stokes equations, Archive for Rational Mechanics and Analysis, 9, 1, 187-195 (1962) · Zbl 0106.18302
[5] Serrin, J.; Langer, R. E., The initial value problem for the Navier-Stokes equations, Nonlinear Problems (1963), Madison, Wis, USA: University of Wisconsin Press, Madison, Wis, USA
[6] Gala, S., Remarks on regularity criterion for weak solutions to the Navier-Stokes equations in terms of the gradient of the pressure, Applicable Analysis, 92, 1, 96-103 (2013) · Zbl 1284.35313
[7] He, X.; Gala, S., Regularity criterion for weak solutions to the Navier-Stokes equations in terms of the pressure in the class \(####\), Nonlinear Analysis: Real World Applications, 12, 6, 3602-3607 (2011) · Zbl 1231.35146
[8] Neustupa, J.; Novotný, A.; Penel, P., An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity, topics in mathematical uid mechanics, Quaderni di Matematica, 10, 163-183 (2002) · Zbl 1050.35073
[9] Zhang, Z., A serrin-type regularity criterion for the Navier-Stokes equations via one velocity component, Communications on Pure and Applied Analysis, 12, 1, 117-124 (2013) · Zbl 1278.35184
[10] Zhang, Z.; Yao, Z.-A.; Li, P.; Guo, C.; Lu, M., Two new regularity criteria for the 3D Navier-Stokes equations via two entries of the velocity gradient tensor, Acta Applicandae Mathematicae, 123, 1, 43-52 (2013) · Zbl 1257.35146
[11] Zhang, Z. J.; Zhong, D. X.; Hu, L., A new regularity criterion for the 3D Navier-Stokes equations via two entries of the velocity gradient tensor, Acta Applicandae Mathematicae (2013) · Zbl 1285.35068
[12] Zhang, Z.; Yao, Z.-A.; Lu, M.; Ni, L., Some serrin-type regularity criteria for weak solutions to the Navier-Stokes equations, Journal of Mathematical Physics, 52, 5 (2011) · Zbl 1317.35180
[13] Zhou, Y., A new regularity criterion for weak solutions to the Navier-Stokes equations, Journal des Mathematiques Pures et Appliquees, 84, 11, 1496-1514 (2005) · Zbl 1092.35081
[14] Zhou, Y.; Pokorný, M., On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component, Journal of Mathematical Physics, 50, 12 (2009) · Zbl 1373.35226
[15] Zhou, Y.; Pokorný, M., On the regularity of the solutions of the Navier-Stokes equations via one velocity component, Nonlinearity, 23, 5, 1097-1107 (2010) · Zbl 1190.35179
[16] Fan, J. S.; Zhou, Y., A note on regularity criterion for the 3D Boussinesq system with partial viscosity, Applied Mathematics Letters, 22, 5, 802-805 (2009) · Zbl 1171.35342
[17] Ishimura, N.; Morimoto, H., Remarks on the blow-up criterion for the 3-D Boussinesq equations, Mathematical Models and Methods in Applied Sciences, 9, 9, 1323-1332 (1999) · Zbl 1034.35113
[18] Qiu, H.; Du, Y.; Yao, Z., Blow-up criteria for 3D Boussinesq equations in the multiplier space, Communications in Nonlinear Science and Numerical Simulation, 16, 4, 1820-1824 (2011) · Zbl 1221.35302
[19] Qiu, H.; Du, Y.; Yao, Z., Serrin-type blow-up criteria for 3D Boussinesq equations, Applicable Analysis, 89, 10, 1603-1613 (2010) · Zbl 1387.35501
[20] Zhang, Z. J., A logarithmically improved regularity criterion for the 3D Boussinesq equations via the pressure, Acta Applicandae Mathematicae (2013) · Zbl 1297.35071
[21] Kato, T., Strong solutions of the Navier-Stokes equation in Morrey spaces, Boletim da Sociedade Brasileira de Matemática, 22, 2, 127-155 (1992) · Zbl 0781.35052
[22] Taylor, M. E., Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Communications in Partial Differential Equations, 17, 9-10, 1407-1456 (1992) · Zbl 0771.35047
[23] Zhang, Z., Remarks on the regularity criteria for generalized MHD equations, Journal of Mathematical Analysis and Applications, 375, 2, 799-802 (2011) · Zbl 1211.35230
[24] Lemarié-Rieusset, P. G., Recent Developments in the Navier-Stokes Problem (2002), London, UK: Chapman & Hall, London, UK · Zbl 1034.35093
[25] Zhou, Y.; Gala, S., A new regularity criterion for weak solutions to the viscous MHD equations in terms of the vorticity field, Nonlinear Analysis: Theory, Methods & Applications, 72, 9-10, 3643-3648 (2010) · Zbl 1185.35204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.