×

Some integral type fixed point theorems for non-self-mappings satisfying generalized \((\psi, \varphi)\)-weak contractive conditions in symmetric spaces. (English) Zbl 1469.54141

Summary: The aim of this paper is to obtain some new integral type fixed point theorems for nonself weakly compatible mappings in symmetric spaces satisfying generalized \((\psi, \varphi)\)-contractive conditions employing the common limit range property. We furnish some interesting examples which support our main theorems. Our results generalize and extend some recent results contained in [the second author et al., Math. Sci., Springer 7, Paper No. 16, 8 p. (2013; Zbl 1277.54032)] to symmetric spaces. Consequently, a host of metrical common fixed theorems are generalized and improved. In the process, we also derive a fixed point theorem for four finite families of mappings which can be utilized to derive common fixed point theorems involving any number of finite mappings.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
54E40 Special maps on metric spaces

Citations:

Zbl 1277.54032
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hicks, T. L.; Rhoades, B. E., Fixed point theory in symmetric spaces with applications to probabilistic spaces, Nonlinear Analysis A: Theory and Methods, 36, 3, 331-344 (1999) · Zbl 0947.54022 · doi:10.1016/S0362-546X(98)00002-9
[2] Pant, R. P., Noncompatible mappings and common fixed points, Soochow Journal of Mathematics, 26, 1, 29-35 (2000) · Zbl 0945.54033
[3] Jungck, G., Compatible mappings and common fixed points, International Journal of Mathematics and Mathematical Sciences, 9, 4, 771-779 (1986) · Zbl 0613.54029 · doi:10.1155/S0161171286000935
[4] Sessa, S., On a weak commutativity condition of mappings in fixed point considerations, Institut Mathématique, 32(46), 149-153 (1982) · Zbl 0523.54030
[5] Jungck, G.; Rhoades, B. E., Fixed points for set valued functions without continuity, Indian Journal of Pure and Applied Mathematics, 29, 3, 227-238 (1998) · Zbl 0904.54034
[6] Singh, S. L.; Tomar, A., Weaker forms of commuting maps and existence of fixed points, Journal of the Korea Society of Mathematical Education B, 10, 3, 145-161 (2003) · Zbl 1203.54048
[7] Murthy, P. P., Important tools and possible applications of metric fixed point theory, Nonlinear Analysis: Theory, Methods & Applications, 47, 53479 (2001) · Zbl 1042.54507
[8] Al-Thagafi, M. A.; Shahzad, N., Generalized \(I\)-nonexpansive selfmaps and invariant approximations, Acta Mathematica Sinica, 24, 5, 867-876 (2008) · Zbl 1175.41026 · doi:10.1007/s10114-007-5598-x
[9] Abbas, M.; Rhoades, B. E., Common fixed point theorems for occasionally weakly compatible mappings satisfying a generalized contractive condition, Mathematical Communications, 13, 2, 295-301 (2008) · Zbl 1175.47050
[10] Aliouche, A.; Popa, V., Common fixed point theorems for occasionally weakly compatible mappings via implicit relations, Filomat, 22, 2, 99-107 (2008) · Zbl 1199.54200 · doi:10.2298/FIL0802099A
[11] Bhatt, A.; Chandra, H.; Sahu, D. R., Common fixed point theorems for occasionally weakly compatible mappings under relaxed conditions, Nonlinear Analysis A: Theory and Methods, 73, 1, 176-182 (2010) · Zbl 1227.47034 · doi:10.1016/j.na.2010.03.011
[12] Imdad, M.; Chauhan, S.; Kadelburg, Z.; Vetro, C., Fixed point theorems for non-self mappings in symmetric spaces under \(\varphi \)-weak contractive conditions and an application to functional equations in dynamic programming, Applied Mathematics and Computation, 227, 469-479 (2014) · Zbl 1364.47008 · doi:10.1016/j.amc.2013.11.014
[13] Đorić, D.; Kadelburg, Z.; Radenović, S., A note on occasionally weakly compatible mappings and common fixed points, Fixed Point Theory, 13, 2, 475-479 (2012) · Zbl 1297.54110
[14] Aamri, M.; El Moutawakil, D., Some new common fixed point theorems under strict contractive conditions, Journal of Mathematical Analysis and Applications, 270, 1, 181-188 (2002) · Zbl 1008.54030 · doi:10.1016/S0022-247X(02)00059-8
[15] Sastry, K. P. R.; Krishna Murthy, I. S. R., Common fixed points of two partially commuting tangential selfmaps on a metric space, Journal of Mathematical Analysis and Applications, 250, 2, 731-734 (2000) · Zbl 0977.54037 · doi:10.1006/jmaa.2000.7082
[16] Liu, Y.; Wu, J.; Li, Z., Common fixed points of single-valued and multivalued maps, International Journal of Mathematics and Mathematical Sciences, 19, 3045-3055 (2005) · Zbl 1087.54019 · doi:10.1155/IJMMS.2005.3045
[17] Imdad, M.; Chauhan, S.; Kadelburg, Z., Fixed point theorem for mappings with common limit range property satisfying generalized \((\psi, \varphi)\)-weak contractive conditions, Mathematical Sciences, 7, article 16 (2013) · Zbl 1277.54032 · doi:10.1186/2251-7456-7-16
[18] Soliman, A. H.; Imdad, M.; Hasan, M., Proving unified common fixed point theorems via common property (E.A) in symmetric spaces, Korean Mathematical Society, 25, 4, 629-645 (2010) · Zbl 1210.54060 · doi:10.4134/CKMS.2010.25.4.629
[19] Pant, R. P., Common fixed points of Lipschitz type mapping pairs, Journal of Mathematical Analysis and Applications, 240, 1, 280-283 (1999) · Zbl 0933.54031 · doi:10.1006/jmaa.1999.6559
[20] Sintunavarat, W.; Kumam, P., Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces, Journal of Applied Mathematics, 2011 (2011) · Zbl 1226.54061 · doi:10.1155/2011/637958
[21] Imdad, M.; Pant, B. D.; Chauhan, S., Fixed point theorems in Menger spaces using the \((C L R_{S T})\) property and applications, Journal of Nonlinear Analysis and Optimization: Theory and Applications, 3, 2, 225-237 (2012) · Zbl 1394.54023
[22] Karapınar, E.; Patel, D. K.; Imdad, M.; Gopal, D., Some nonunique common fixed point theorems in symmetric spaces through \(\operatorname{ CLR }_{(S, T)}\) property, International Journal of Mathematics and Mathematical Sciences (2013) · Zbl 1263.54054
[23] Gopal, D.; Pant, R. P.; Ranadive, A. S., Common fixed point of absorbing maps, Bulletin Marathwada Mathematical Society, 9, 1, 43-48 (2008)
[24] Alber, Ya. I.; Guerre-Delabriere, S., Principle of weakly contractive maps in Hilbert spaces, New Results in Operator Theory and its Applications. New Results in Operator Theory and its Applications, Operator Theory: Advances and Applications, 98, 7-22 (1997) · Zbl 0897.47044
[25] Rhoades, B. E., Some theorems on weakly contractive maps, Nonlinear Analysis, 47, 2683-2693 (2001) · Zbl 1042.47521
[26] Branciari, A., A fixed point theorem for mappings satisfying a general contractive condition of integral type, International Journal of Mathematics and Mathematical Sciences, 29, 9, 531-536 (2002) · Zbl 0993.54040 · doi:10.1155/S0161171202007524
[27] Djoudi, A.; Aliouche, A., Common fixed point theorems of Gregus type for weakly compatible mappings satisfying contractive conditions of integral type, Journal of Mathematical Analysis and Applications, 329, 1, 31-45 (2007) · Zbl 1116.47047 · doi:10.1016/j.jmaa.2006.06.037
[28] Liu, Z.; Li, X.; Kang, S. M.; Cho, S. Y., Fixed point theorems for mappings satisfying contractive conditions of integral type and applications, Fixed Point Theory and Applications, 64, article 18 (2011) · Zbl 1271.54084
[29] Samet, B.; Vetro, C., An integral version of Ćirićs fixed point theorem, Mediterranean Journal of Mathematics, 9, 1, 225-238 (2012) · Zbl 1237.54059 · doi:10.1007/s00009-011-0120-1
[30] Sintunavarat, W.; Kumam, P., Gregus-type common fixed point theorems for tangential multivalued mappings of integral type in metric spaces, International Journal of Mathematics and Mathematical Sciences, 2011 (2011) · Zbl 1215.54026 · doi:10.1155/2011/923458
[31] Sintunavarat, W.; Kumam, P., Gregus type fixed points for a tangential multi-valued mappings satisfying contractive conditions of integral type, Journal of Inequalities and Applications, 2011, article 3 (2011) · Zbl 1288.54044 · doi:10.1186/1029-242X-2011-3
[32] Suzuki, T., Meir-Keeler contractions of integral type are still Meir-Keeler contractions, International Journal of Mathematics and Mathematical Sciences, 2007 (2007) · Zbl 1142.54019 · doi:10.1155/2007/39281
[33] Vetro, C.; Chauhan, S.; Karapnar, E.; Shatanawi, W., Fixed points of weakly compatible mappings satisfying generalized \(\varphi \)-weak contractions · Zbl 1317.54021
[34] Zhang, Q.; Song, Y., Fixed point theory for generalized \(\varphi \)-weak contractions, Applied Mathematics Letters, 22, 1, 75-78 (2009) · Zbl 1163.47304 · doi:10.1016/j.aml.2008.02.007
[35] Đorić, D., Common fixed point for generalized \((\psi, \varphi)\)-weak contractions, Applied Mathematics Letters, 22, 12, 1896-1900 (2009) · Zbl 1203.54040 · doi:10.1016/j.aml.2009.08.001
[36] Dutta, P. N.; Choudhury, B. S., A generalisation of contraction principle in metric spaces, Fixed Point Theory and Applications (2008) · Zbl 1177.54024
[37] Imdad, M.; Ali, J.; Tanveer, M., Coincidence and common fixed point theorems for nonlinear contractions in Menger PM spaces, Chaos, Solitons & Fractals, 42, 5, 3121-3129 (2009) · Zbl 1198.54076 · doi:10.1016/j.chaos.2009.04.017
[38] Radenović, S.; Kadelburg, Z.; Jandrlić, D.; Jandrlić, A., Some results on weakly contractive maps, Iranian Mathematical Society: Bulletin, 38, 3, 625-645 (2012) · Zbl 1391.54036
[39] Wilson, W. A., On semi-metric spaces, American Journal of Mathematics, 53, 2, 361-373 (1931) · Zbl 0001.22804 · doi:10.2307/2370790
[40] Aliouche, A., A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying a contractive condition of integral type, Journal of Mathematical Analysis and Applications, 322, 2, 796-802 (2006) · Zbl 1111.47046 · doi:10.1016/j.jmaa.2005.09.068
[41] Galvin, F.; Shore, S. D., Completeness in semimetric spaces, Pacific Journal of Mathematics, 113, 1, 67-75 (1984) · Zbl 0558.54019 · doi:10.2140/pjm.1984.113.67
[42] Cho, S.-H.; Lee, G.-Y.; Bae, J.-S., On coincidence and fixed-point theorems in symmetric spaces, Fixed Point Theory and Applications (2008) · Zbl 1169.54020
[43] Aamri, M.; El Moutawakil, D., Common fixed points under contractive conditions in symmetric spaces, Applied Mathematics E-Notes, 3, 156-162 (2003) · Zbl 1056.47036
[44] Gopal, D.; Hasan, M.; Imdad, M., Absorbing pairs facilitating common fixed point theorems for Lipschitzian type mappings in symmetric spaces, Korean Mathematical Society: Communications, 27, 2, 385-397 (2012) · Zbl 1246.54038 · doi:10.4134/CKMS.2012.27.2.385
[45] Gopal, D.; Imdad, M.; Vetro, C., Common fixed point theorems for mappings satisfying common property (E.A.) in symmetric spaces, Filomat, 25, 2, 59-78 (2011) · Zbl 1265.54169 · doi:10.2298/FIL1102059G
[46] Imdad, M.; Ali, J., Common fixed point theorems in symmetric spaces employing a new implicit function and common property (E.A), Bulletin of the Belgian Mathematical Society, 16, 3, 421-433 (2009) · Zbl 1188.47044
[47] Imdad, M.; Ali, J.; Khan, L., Coincidence and fixed points in symmetric spaces under strict contractions, Journal of Mathematical Analysis and Applications, 320, 1, 352-360 (2006) · Zbl 1098.54033 · doi:10.1016/j.jmaa.2005.07.004
[48] Turkoglu, D.; Altun, I., A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying an implicit relation, Sociedad Matemática Mexicana, 13, 1, 195-205 (2007) · Zbl 1171.54342
[49] Imdad, M.; Sharma, A.; Chauhan; :, S., Unifying a multitude of metrical fixed point theorems in symmetric spaces · Zbl 1459.54028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.