×

Discontinuous Galerkin immersed finite volume element method for anisotropic flow models in porous medium. (English) Zbl 1474.76040

Summary: By choosing the trial function space to the immersed finite element space and the test function space to be piecewise constant function space, we develop a discontinuous Galerkin immersed finite volume element method to solve numerically a kind of anisotropic diffusion models governed by the elliptic interface problems with discontinuous tensor-conductivity. The existence and uniqueness of the discrete scheme are proved, and an optimal-order energy-norm estimate and \(L^2\)-norm estimate for the numerical solution are derived.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage

Software:

IIMPACK
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bramble, J. H., A finite element method for interface problems in domains with smooth boundaries and interfaces, Advances in Computational Mathematics, 6, 1, 109-138, (1996) · Zbl 0868.65081
[2] Babuska, I., The finite element method for elliptic equations with discontinuous coefficients, Computing, 5, 3, 207-213, (1970) · Zbl 0199.50603
[3] Chen, Z.; Zou, J., Finite element methods and their convergence for elliptic and parabolic interface problems, Numerische Mathematik, 79, 2, 175-202, (1998) · Zbl 0909.65085
[4] Leveque, R. J.; Li, Z., The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM Journal on Numerical Analysis, 31, 4, 1019-1044, (1994) · Zbl 0811.65083
[5] Li, Z.; Lin, T.; Wu, X., New Cartesian grid methods for interface problems using the finite element formulation, Numerische Mathematik, 96, 1, 61-98, (2003) · Zbl 1055.65130
[6] Gong, Y.; Li, B.; Li, Z., Immersed-interface finite-element methods for elliptic interface problems with nonhomogeneous jump conditions, SIAM Journal on Numerical Analysis, 46, 1, 472-495, (2008) · Zbl 1160.65061
[7] Li, Z.; Lin, T.; Lin, Y.; Rogers, R. C., An immersed finite element space and its approximation capability, Numerical Methods for Partial Differential Equations, 20, 3, 338-367, (2004) · Zbl 1057.65085
[8] Li, Z., The immersed interface method using a finite element formulation, Applied Numerical Mathematics, 27, 3, 253-267, (1998) · Zbl 0936.65091
[9] Li, Z.; Ito, K., The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains. The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains, Frontiers in Applied Mathematics, 33, (2006), Philadelphia, Pa, USA: SIAM, Philadelphia, Pa, USA · Zbl 1122.65096
[10] Ewing, R. E.; Li, Z.; Lin, T.; Lin, Y., The immersed finite volume element methods for the elliptic interface problems, Mathematics and Computers in Simulation, 50, 1–4, 63-76, (1999) · Zbl 1027.65155
[11] Cai, Z., On the finite volume element method, Numerische Mathematik, 58, 1, 713-735, (1991) · Zbl 0731.65093
[12] Chou, S. H., Analysis and convergence of a covolume method for the generalized stokes problem, Mathematics of Computation, 66, 217, 85-104, (1997) · Zbl 0854.65091
[13] Cai, Z.; Mccormick, S., On the accuracy of the finite volume element method for diffusion equations on composite grids, SIAM Journal on Numerical Analysis, 27, 3, 636-655, (1990) · Zbl 0707.65073
[14] Ewing, R. E.; Lazarov, R. D.; Lin, Y., Finite volune element approximations of non-local in time one-dimensional reactive flows in porous media, ISC-98-06-MATH, Institute for Scientific Computation · Zbl 0969.76052
[15] Süli, E., Convergence of finite volume schemes for Poisson’s equation on nonuniform meshes, SIAM Journal on Numerical Analysis, 28, 5, 1419-1430, (1991) · Zbl 0802.65104
[16] Thomas, J. M.; Trujillo, D., Analysis of finite volume methods, 19, (1995), Pau, France: Université de Pau et des Pays de L’adour, Pau, France
[17] An, N.; Chen, H. Z., A partially penalty immersed finite element method for anisotropic flow medels in porous medium
[18] Zhang, R. G.; Chen, H. Z., An immersed finite element method for anisotropic flow models in porous medium, Proceedings of the International Conference on Information Science and Technology (ICIST ’11)
[19] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Donatella Marini, L., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM Journal on Numerical Analysis, 39, 5, 1749-1779, (2002) · Zbl 1008.65080
[20] Rivière, B., Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, Frontiers in Applied Mathematics, 35, (2008), Philadelphia, Pa, USA: SIAM, Philadelphia, Pa, USA · Zbl 1153.65112
[21] Ye, X., A new discontinuous finite volume method for elliptic problems, SIAM Journal on Numerical Analysis, 42, 3, 1062-1072, (2004) · Zbl 1079.65116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.