×

The rate of convergence of Lupas \(q\)-analogue of the Bernstein operators. (English) Zbl 1474.41043

Summary: We discuss the rate of convergence of the Lupas \(q\)-analogues of the Bernstein operators \(R_{n, q}(f; x)\) which were given by Lupas in 1987. We obtain the estimates for the rate of convergence of \(R_{n, q}(f)\) by the modulus of continuity of \(f\), and show that the estimates are sharp in the sense of order for Lipschitz continuous functions.

MSC:

41A35 Approximation by operators (in particular, by integral operators)

References:

[1] Bernstein, S. N., Démonstration du théorème de Weierstrass fondée sur la calcul des probabilités, Communications of the Mathematical Society of Charkow Séries 2, 13, 1-2 (1912) · JFM 43.0301.03
[2] Lupas, A., A \(q\)-analogue of the Bernstein operator · Zbl 0684.41014
[3] Phillips, G. M., Bernstein polynomials based on the \(q\)-integers, Annals of Numerical Mathematics, 4, 1-4, 511-518 (1997) · Zbl 0881.41008
[4] Lewanowicz, S.; Woźny, P., Generalized Bernstein polynomials, BIT Numerical Mathematics, 44, 1, 63-78 (2004) · Zbl 1045.41003 · doi:10.1023/B:BITN.0000025086.89121.d8
[5] Derriennic, M.-M., Modified Bernstein polynomials and Jacobi polynomials in \(q\)-calculus, Rendiconti del Circolo Matematico di Palermo Serie 2, 269-290 (2005) · Zbl 1142.41002
[6] Il’inskii, A.; Ostrovska, S., Convergence of generalized Bernstein polynomials, Journal of Approximation Theory, 116, 1, 100-112 (2002) · Zbl 0999.41007 · doi:10.1006/jath.2001.3657
[7] Ostrovska, S., On the \(q\)-Bernstein polynomials, Advanced Studies in Contemporary Mathematics, 11, 2, 193-204 (2005) · Zbl 1116.41013
[8] Ostrovska, S., The approximation by \(q\)-Bernstein polynomials in the case \(q \downarrow 1\), Archiv der Mathematik, 86, 3, 282-288 (2006) · Zbl 1096.41004 · doi:10.1007/s00013-005-1503-y
[9] Ostrovska, S., The first decade of the \(q\)-Bernstein polynomials: results and perspectives, Journal of Mathematical Analysis and Approximation Theory, 2, 1, 35-51 (2007) · Zbl 1159.41301
[10] Phillips, G. M., Interpolation and Approximation by Polynomials (2003), New York, NY, USA: Springer, New York, NY, USA · Zbl 1023.41002
[11] Phillips, G. M., A survey of results on the \(q\)-Bernstein polynomials, IMA Journal of Numerical Analysis, 30, 1, 277-288 (2010) · Zbl 1191.41002 · doi:10.1093/imanum/drn088
[12] Wang, H., Korovkin-type theorem and application, Journal of Approximation Theory, 132, 2, 258-264 (2005) · Zbl 1118.41015 · doi:10.1016/j.jat.2004.12.010
[13] Wang, H., Voronovskaya-type formulas and saturation of convergence for \(q\)-Bernstein polynomials for \(0 < q < 1\), Journal of Approximation Theory, 145, 2, 182-195 (2007) · Zbl 1112.41016 · doi:10.1016/j.jat.2006.08.005
[14] Wang, H.; Meng, F., The rate of convergence of \(q\)-Bernstein polynomials for \(0 < q < 1\), Journal of Approximation Theory, 136, 2, 151-158 (2005) · Zbl 1082.41007 · doi:10.1016/j.jat.2005.07.001
[15] Wang, H.; Wu, X., Saturation of convergence for \(q\)-Bernstein polynomials in the case \(q \geq 1\), Journal of Mathematical Analysis and Applications, 337, 1, 744-750 (2008) · Zbl 1122.33014 · doi:10.1016/j.jmaa.2007.04.014
[16] Finta, Z., Quantitative estimates for the Lupaş \(q\)-analogue of the Bernstein operator, Demonstratio Mathematica, 44, 1, 123-130 (2011) · Zbl 1229.41016
[17] Han, L.-W.; Chu, Y.; Qiu, Z.-Y., Generalized Bézier curves and surfaces based on Lupaş \(q\)-analogue of Bernstein operator, Journal of Computational and Applied Mathematics, 261, 352-363 (2014) · Zbl 1281.65022 · doi:10.1016/j.cam.2013.11.016
[18] Mahmudov, N. I.; Sabancigil, P., Voronovskaja type theorem for the Lupaş \(q\)-analogue of the Bernstein operators, Mathematical Communications, 17, 1, 83-91 (2012) · Zbl 1250.41011
[19] Ostrovska, S., On the Lupas \(q\)-analogue of the Bernstein operator, The Rocky Mountain Journal of Mathematics, 36, 5, 1615-1629 (2006) · Zbl 1138.41008 · doi:10.1216/rmjm/1181069386
[20] Ostrovska, S., On the Lupaş \(q\)-transform, Computers & Mathematics with Applications, 61, 3, 527-532 (2011) · Zbl 1217.44006 · doi:10.1016/j.camwa.2010.11.025
[21] Ostrovska, S., Analytical properties of the Lupaş \(q\)-transform, Journal of Mathematical Analysis and Applications, 394, 1, 177-185 (2012) · Zbl 1290.30029 · doi:10.1016/j.jmaa.2012.04.047
[22] Lorentz, G. G., Bernstein Polynomials (1986), New York, NY, USA: Chelsea, New York, NY, USA · Zbl 0989.41504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.