×

Bell polynomials approach applied to \((2+1)\)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation. (English) Zbl 1474.35560

Summary: The bilinear form, bilinear Bäcklund transformation, and Lax pair of a \((2+1)\)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation are derived through Bell polynomials. The integrable constraint conditions on variable coefficients can be naturally obtained in the procedure of applying the Bell polynomials approach. Moreover, the \(N\)-soliton solutions of the equation are constructed with the help of the Hirota bilinear method. Finally, the infinite conservation laws of this equation are obtained by decoupling binary Bell polynomials. All conserved densities and fluxes are illustrated with explicit recursion formulae.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35A30 Geometric theory, characteristics, transformations in context of PDEs

References:

[1] Hirota, R., Direct Methods in Soliton Theory (2004), Berlin, Germany: Springer, Berlin, Germany
[2] Hirota, R.; Satsuma, J., Nonlinear evolution equations generated from the Bäcklund transformation for the BOUssinesq equation, Progress of Theoretical Physics, 57, 3, 797-807 (1977) · Zbl 1098.81547 · doi:10.1143/PTP.57.797
[3] Hirota, R., Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Physical Review Letters, 27, article 1192 (1971) · Zbl 1168.35423 · doi:10.1103/PhysRevLett.27.1192
[4] Hu, X. B.; Clarkson, P. A., Rational solutions of a differential-difference KDV equation, the Toda equation and the discrete KDV Equation, Journal of Physics, 28, 17, 5009-5016 (1995) · Zbl 0868.35132 · doi:10.1088/0305-4470/28/17/029
[5] Hu, X.; Li, C.; Nimmo, J. J. C., An integrable symmetric \(( 2 + 1 )\)-dimensional Lotka-Volterra equation and a family of its solutions, Journal of Physics A: Mathematical and General, 38, 1, 195-204 (2005) · Zbl 1063.37063 · doi:10.1088/0305-4470/38/1/014
[6] Zhang, D.-J., The \(N\)-soliton solutions for the modified KdV equation with self-consistent sources, Journal of the Physical Society of Japan, 71, 11, 2649-2656 (2002) · Zbl 1058.37054 · doi:10.1143/JPSJ.71.2649
[7] Bell, E. T., Exponential polynomials, Annals of Mathematics, 35, 258-277 (1934) · Zbl 0009.21202
[8] Lambert, F.; Springael, J., Soliton equations and simple combinatorics, Acta Applicandae Mathematicae, 102, 2-3, 147-178 (2008) · Zbl 1156.35078 · doi:10.1007/s10440-008-9209-3
[9] Lambert, F.; Springael, J., On a direct procedure for the disclosure of Lax pairs and Bäcklund transformations, Chaos, Solitons and Fractals, 12, 14-15, 2821-2832 (2001) · Zbl 1005.37043 · doi:10.1016/S0960-0779(01)00096-0
[10] Gilson, C.; Lambert, F.; Nimmo, J.; Willox, R., On the combinatorics of the Hirota \(D\)-operators, Proceedings of the Royal Society A, 452, 1945, 223-234 (1996) · Zbl 0868.35101 · doi:10.1098/rspa.1996.0013
[11] Lambert, F.; Loris, I.; Springael, J.; Willox, R., On a direct bilinearization method: Kaup’s higher-order water wave equation as a modified nonlocal Boussinesq equation, Journal of Physics A, 27, 15, 5325-5334 (1994) · Zbl 0845.35088 · doi:10.1088/0305-4470/27/15/028
[12] Fan, E. G., The integrability of nonisospectral and variable-coefficient KdV equation with binary Bell polynomials, Physics Letters A, 375, 3, 493-497 (2011) · Zbl 1241.35176 · doi:10.1016/j.physleta.2010.11.038
[13] Fan, E.; Chow, K. W., Darboux covariant Lax pairs and infinite conservation laws of the \(( 2 + 1 )\)-dimensional breaking soliton equation, Journal of Mathematical Physics, 52, 2 (2011) · Zbl 1314.35138 · doi:10.1063/1.3545804
[14] Wang, Y. H.; Chen, Y., Integrability of the modified generalised Vakhnenko equation, Journal of Mathematical Physics, 53 (2012) · Zbl 1296.37049 · doi:10.1063/1.4764845
[15] Wang, Y.; Chen, Y., Binary Bell polynomial manipulations on the integrability of a generalized \(( 2 + 1 )\)-dimensional Korteweg-de Vries equation, Journal of Mathematical Analysis and Applications, 400, 2, 624-634 (2013) · Zbl 1258.35180 · doi:10.1016/j.jmaa.2012.11.028
[16] Fan, E. G., New bilinear Bäcklund transformation and Lax pair for the supersymmetric two-BOSon equation, Studies in Applied Mathematics, 127, 3, 284-301 (2011) · Zbl 1247.37078 · doi:10.1111/j.1467-9590.2011.00520.x
[17] Fan, E.; Hon, Y. C., Super extension of Bell polynomials with applications to supersymmetric equations, Journal of Mathematical Physics, 53, 1 (2012) · Zbl 1273.81107 · doi:10.1063/1.3673275
[18] Serkin, V. N.; Hasegawa, A., Novel soliton solutions of the nonlinear Schrodinger equation model, Physical Review Letters, 85, 21, 4502-4505 (2000)
[19] Tang, X.-Y.; Gao, Y.; Huang, F.; Lou, S.-Y., Variable coefficient nonlinear systems derived from an atmospheric dynamical system, Chinese Physics B, 18, 11, 4622-4635 (2009) · doi:10.1088/1674-1056/18/11/004
[20] Das, G.; Sarma, J., Response to “Comment on ‘A new mathematical approach for finding the solitary waves in dusty plasma’ ”, Physics of Plasmas, 6, 11, 4394 (1999) · doi:10.1063/1.873705
[21] Konopelchenko, B. G.; Dubrovsky, V. G., Some new integrable nonlinear evolution equations in \(2 + 1\) dimensions, Physics Letters A, 102, 1-2, 15-17 (1984) · doi:10.1016/0375-9601(84)90442-0
[22] Cao, C. W.; Wu, Y. T.; Geng, X. G., On quasi-periodic solutions of the 2+1 dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation, Physics Letters A, 256, 1, 59-65 (1999)
[23] Cao, C. W.; Yang, X., Algebraic-geometric solution to (2+1)-dimensional Sawada-Kotera equation, Communications in Theoretical Physics, 49, 1, 31-36 (2008) · Zbl 1392.37064 · doi:10.1088/0253-6102/49/1/06
[24] Wazwaz, A.-M., Multiple soliton solutions for \(( 2 + 1 )\)-dimensional Sawada-Kotera and Caudrey-Dodd-Gibbon equations, Mathematical Methods in the Applied Sciences, 34, 13, 1580-1586 (2011) · Zbl 1219.35215 · doi:10.1002/mma.1460
[25] Lou, S. Y.; Hu, X. B., Non-local symmetries via Darboux transformations, Journal of Physics A, 30, 5, L95-L100 (1997) · Zbl 1001.35501 · doi:10.1088/0305-4470/30/5/004
[26] Lü, N.; Mei, J.; Zhang, H., Symmetry reductions and group-invariant solutions of \(( 2 + 1 )\)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation, Communications in Theoretical Physics, 53, 4, 591-595 (2010) · Zbl 1218.35188 · doi:10.1088/0253-6102/53/4/01
[27] Hu, X. R.; Chen, Y., Binary bell polynomials approach to generalized Nizhnik-Novikov-Veselov equation, Communications in Theoretical Physics, 56, 2, 218-222 (2011) · Zbl 1247.37059 · doi:10.1088/0253-6102/56/2/04
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.