×

A \(k\)-dimensional system of fractional neutral functional differential equations with bounded delay. (English) Zbl 1475.34051

Summary: R. P. Agarwal et al. [Comput. Math. Appl. 59, No. 3, 1095–1100 (2010; Zbl 1189.34152)] studied the existence of a one-dimensional fractional neutral functional differential equation. In this paper, we study an initial value problem for a class of \(k\)-dimensional systems of fractional neutral functional differential equations by using Krasnoselskii’s fixed point theorem. In fact, our main result generalizes their main result in a sense.

MSC:

34K37 Functional-differential equations with fractional derivatives
34K40 Neutral functional-differential equations

Citations:

Zbl 1189.34152
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agarwal, R. P.; Ahmad, B., Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions, Computers & Mathematics with Applications, 62, 3, 1200-1214 (2011) · Zbl 1228.34009 · doi:10.1016/j.camwa.2011.03.001
[2] Agarwal, R. P.; Belmekki, M.; Benchohra, M., A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative, Advances in Difference Equations, 2009 (2009) · Zbl 1182.34103 · doi:10.1155/2009/981728
[3] Agarwal, R. P.; Benchohra, M.; Hamani, S., A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Applicandae Mathematicae, 109, 3, 973-1033 (2010) · Zbl 1198.26004 · doi:10.1007/s10440-008-9356-6
[4] Agarwal, R. P.; Zhou, Y.; He, Y., Existence of fractional neutral functional differential equations, Computers & Mathematics with Applications, 59, 3, 1095-1100 (2010) · Zbl 1189.34152 · doi:10.1016/j.camwa.2009.05.010
[5] Ahmad, B., Existence of solutions for fractional differential equations of order \(q∈\) (2,3] with anti-periodic boundary conditions, Journal of Applied Mathematics and Computing, 34, 1-2, 385-391 (2010) · Zbl 1216.34003 · doi:10.1007/s12190-009-0328-4
[6] Ahmad, B., New results for boundary value problems of nonlinear fractional differential equations with non-separated boundary conditions, Acta Mathematica Vietnamica, 36, 3, 659-668 (2011) · Zbl 1247.34004
[7] Ahmad, B.; Nieto, J. J., Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Computers & Mathematics with Applications, 58, 9, 1838-1843 (2009) · Zbl 1205.34003 · doi:10.1016/j.camwa.2009.07.091
[8] Bai, C.-Z.; Fang, J.-X., The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations, Applied Mathematics and Computation, 150, 3, 611-621 (2004) · Zbl 1061.34001 · doi:10.1016/S0096-3003(03)00294-7
[9] Bai, Z.; Lü, H., Positive solutions for boundary value problem of nonlinear fractional differential equation, Journal of Mathematical Analysis and Applications, 311, 2, 495-505 (2005) · Zbl 1079.34048 · doi:10.1016/j.jmaa.2005.02.052
[10] Bai, Z.; Sun, W., Existence and multiplicity of positive solutions for singular fractional boundary value problems, Computers & Mathematics with Applications, 63, 9, 1369-1381 (2012) · Zbl 1247.34006 · doi:10.1016/j.camwa.2011.12.078
[11] Baleanu, D.; Mohammadi, H.; Rezapour, Sh., Positive solutions of an initial value problem for nonlinear fractional differential equations, Abstract and Applied Analysis, 2012 (2012) · Zbl 1242.35215 · doi:10.1155/2012/837437
[12] Baleanu, D.; Agarwal, R. P.; Mohammadi, H.; Rezapour, Sh., Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces, Boundary Value Problems, 2013, article 112 (2013) · Zbl 1301.34007 · doi:10.1186/1687-2770-2013-112
[13] Baleanu, D.; Rezapour, Sh.; Mohammadi, H., Some existence results on nonlinear fractional differential equations, Philosophical Transactions of the Royal Society of London A, 371, 1990 (2013) · Zbl 1342.34009 · doi:10.1098/rsta.2012.0144
[14] Baleanu, D.; Mohammadi, H.; Rezapour, Sh., On a nonlinear fractional differential equation on partially ordered metric spaces, Advances in Difference Equations, 2013, article 83 (2013) · Zbl 1380.34007 · doi:10.1186/1687-1847-2013-83
[15] Baleanu, D.; Z. Nazemi, S.; Rezapour, Sh., The existence of positive solutions for a new coupled system of multiterm singular fractional integrodifferential boundary value problems, Abstract and Applied Analysis, 2013 (2013) · Zbl 1294.45005 · doi:10.1155/2013/368659
[16] Baleanu, D.; Nazemi, S. Z.; Rezapour, Sh., Existence and uniqueness of solutions for multi-term nonlinear fractional integro-differential equations, Advances in Differential Equations, 2013, article 368 (2013) · Zbl 1347.34010
[17] Baleanu, D.; Nazemi, S. Z.; Rezapour, Sh., Attractivity for a \(k\)-dimensional system of fractional functional differential equations and global attractivity for a \(k\)-dimensional system of nonlinear fractional differential equations, Journal of Inequalities and Applications, 4014, 31 (2014) · Zbl 1314.34156
[18] Benchohra, M.; Hamani, S.; Ntouyas, S. K., Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Analysis: Theory, Methods & Applications, 71, 7-8, 2391-2396 (2009) · Zbl 1198.26007 · doi:10.1016/j.na.2009.01.073
[19] Cascaval, R. C.; Eckstein, E. C.; Frota, C. L.; Goldstein, J. A., Fractional telegraph equations, Journal of Mathematical Analysis and Applications, 276, 1, 145-159 (2002) · Zbl 1038.35142 · doi:10.1016/S0022-247X(02)00394-3
[20] Cuevas, C.; César de Souza, J., Existence of \(S\)-asymptotically \(\omega \)-periodic solutions for fractional order functional integro-differential equations with infinite delay, Nonlinear Analysis: Theory, Methods & Applications, 72, 3-4, 1683-1689 (2010) · Zbl 1197.47063 · doi:10.1016/j.na.2009.09.007
[21] Cuevas, C.; de Souza, J. C., \(S\)-asymptotically \(\omega \)-periodic solutions of semilinear fractional integro-differential equations, Applied Mathematics Letters of Rapid Publication, 22, 6, 865-870 (2009) · Zbl 1176.47035 · doi:10.1016/j.aml.2008.07.013
[22] Cuevas, C.; Rabelo, M.; Soto, H., Pseudo-almost automorphic solutions to a class of semilinear fractional differential equations, Communications on Applied Nonlinear Analysis, 17, 1, 33-48 (2010)
[23] Darwish, M. A.; Ntouyas, S. K., On initial and boundary value problems for fractional order mixed type functional differential inclusions, Computers & Mathematics with Applications, 59, 3, 1253-1265 (2010) · Zbl 1189.34029 · doi:10.1016/j.camwa.2009.05.006
[24] dos Santos, J. P. C.; Cuevas, C., A symptotically almost automorphic solutions of abstract fractional integro-differential neutral equations, Applied Mathematics Letters of Rapid Publication, 23, 9, 960-965 (2010) · Zbl 1198.45014 · doi:10.1016/j.aml.2010.04.016
[25] Eidelman, S. D.; Kochubei, A. N., Cauchy problem for fractional diffusion equations, Journal of Differential Equations, 199, 2, 211-255 (2004) · Zbl 1068.35037 · doi:10.1016/j.jde.2003.12.002
[26] Gorenflo, R.; Mainardi, F., Fractional calculus: integral and differential equations of fractional order, Fractals and Fractional Calculus in Continuum Mechanics, 378, 223-276 (1997), New York, NY, USA: Springer, New York, NY, USA · Zbl 1438.26010
[27] Hilfer, H., Applications of Fractional Calculus in Physics (2000), Singapore: World Scientific Publishing, Singapore · Zbl 0998.26002 · doi:10.1142/9789812817747
[28] Lakshmikantham, V., Theory of fractional functional differential equations, Nonlinear Analysis: Theory, Methods & Applications, 69, 10, 3337-3343 (2008) · Zbl 1162.34344 · doi:10.1016/j.na.2007.09.025
[29] Lakshmikantham, V.; Devi, J. V., Theory of fractional differential equations in a Banach space, European Journal of Pure and Applied Mathematics, 1, 1, 38-45 (2008) · Zbl 1146.34042
[30] Tenreiro MacHado, J. A.; Silva, M. F.; Barbosa, R. S.; Jesus, I. S.; Reis, C. M.; Marcos, M. G.; Galhano, A. F., Some applications of fractional calculus in engineering, Mathematical Problems in Engineering, 2010 (2010) · Zbl 1191.26004 · doi:10.1155/2010/639801
[31] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0789.26002
[32] Mohammadi, H.; Rezapour, Sh., Existence results for nonlinear fractional differential equations on ordered gauge spaces, Journal of Advanced Mathematical Studies, 6, 2, 154-158 (2013) · Zbl 1296.26032
[33] Ntouyas, S. K.; Obaid, M., A coupled system of fractional differential equations with nonlocal integral boundary conditions, Advances in Difference Equations, 2012, article 130 (2012) · Zbl 1350.34010 · doi:10.1186/1687-1847-2012-130
[34] Podlubny, I., Fractional Differential Equations, 198 (1999), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0918.34010
[35] Su, X., Boundary value problem for a coupled system of nonlinear fractional differential equations, Applied Mathematics Letters of Rapid Publication, 22, 1, 64-69 (2009) · Zbl 1163.34321 · doi:10.1016/j.aml.2008.03.001
[36] Zhou, Y.; Jiao, F.; Li, J., Existence and uniqueness for \(p\)-type fractional neutral differential equations, Nonlinear Analysis: Theory, Methods & Applications, 71, 7-8, 2724-2733 (2009) · Zbl 1175.34082 · doi:10.1016/j.na.2009.01.105
[37] Zhou, Y.; Jiao, F.; Li, J., Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear Analysis: Theory, Methods & Applications, 71, 7-8, 3249-3256 (2009) · Zbl 1177.34084 · doi:10.1016/j.na.2009.01.202
[38] Smart, D. R., Fixed Point Theorems (1974), New York, NY, USA: Cambridge University Press, New York, NY, USA · Zbl 0297.47042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.