×

On some classes of linear Volterra integral equations. (English) Zbl 1474.45013

Summary: The sufficient conditions are obtained for the existence and uniqueness of continuous solution to the linear nonclassical Volterra equation that appears in the integral models of developing systems. The Volterra integral equations of the first kind with piecewise smooth kernels are considered. Illustrative examples are presented.

MSC:

45D05 Volterra integral equations

Software:

LambertW
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Volterra, V., Sopra alcune questioni di inversione di integrali definiti, Annali di Matematica Pura ed Applicata: Series 2, 25, 1, 139-178 (1897) · doi:10.1007/BF02580504
[2] Brunner, H., 1896-1996: One hundred years of Volterra integral equations of the first kind, Applied Numerical Mathematics, 24, 2-3, 83-93 (1997) · Zbl 0879.45001 · doi:10.1016/S0168-9274(97)00013-5
[3] Brunner, H.; van der Houwen, P. J., The Numerical Solution of Volterra Equations. The Numerical Solution of Volterra Equations, CWI Monographs, 3 (1986), Amsterdam, The Netherlands: North-Holland, Amsterdam, The Netherlands · Zbl 0611.65092
[4] Brunner, H., Collocation Methods for Volterra Integral and Related Functional Differential Equations. Collocation Methods for Volterra Integral and Related Functional Differential Equations, Cambridge Monographs on Applied and Computational Mathematics, 15 (2004), Cambridge, Mass, USA: Cambridge University Press, Cambridge, Mass, USA · Zbl 1059.65122 · doi:10.1017/CBO9780511543234
[5] Apartsyn, A. S., Nonclassical Linear Volterra Equations of the First Kind (2003), Utrecht, The Netherlands: VSP, Utrecht, The Netherlands · Zbl 1105.45001 · doi:10.1515/9783110944976
[6] Glushkov, V. M., On one class of dynamic macroeconomic models, Upravlyayushchiye Sistemy I Mashiny, 2, 3-6 (1977)
[7] Glushkov, V. M.; Ivanov, V. V.; Yanenko, V. M., Modeling of Developing Systems (1983), Moscow, Russia: Nauka, Moscow, Russia · Zbl 0538.93034
[8] Yatsenko, Y. P., Integral Models of Systems with Controlled Memory (1991), Kiev, Ukraine: Naukova Dumka, Kiev, Ukraine · Zbl 0852.93002
[9] Hritonenko, N.; Yatsenko, Y., Applied Mathematical Modelling of Engineering Problems. Applied Mathematical Modelling of Engineering Problems, Applied Optimization, 81 (2003), Dordrecht, The Netherlands: Kluwer Academic Publishers, Dordrecht, The Netherlands · Zbl 1023.00002 · doi:10.1007/978-1-4419-9160-7
[10] Apartsyn, A. S.; Markova, E. V.; Trufanov, V. V., Integral Models of Electric Power System Development (2002), Irkutsk, Russia: Energy Systems Institute SB RAS, Irkutsk, Russia
[11] Ivanov, D. V.; Karaulova, V.; Markova, E. V.; Trufanov, V. V.; Khamisov, O. V., Control of power grid development: numerical solutions, Automation and Remote Control, 65, 3, 472-482 (2004) · Zbl 1082.90047 · doi:10.1023/B:AURC.0000019380.88379.d9
[12] Apartsyn, A. S.; Karaulova, I. V.; Markova, E. V.; Trufanov, V. V., Application of the Volterra integral equations for the modeling of strategies of technical re-equipment in the electric power industry, Electrical Technology Russia, 10, 64-75 (2005)
[13] Messina, E.; Russo, E.; Vecchio, A., A stable numerical method for Volterra integral equations with discontinuous kernel, Journal of Mathematical Analysis and Applications, 337, 2, 1383-1393 (2008) · Zbl 1142.65110 · doi:10.1016/j.jmaa.2007.04.059
[14] Kantorovich, L. V.; Akilov, G. P., Functional Analysis (1977), Moscow, Russia: Nauka, Moscow, Russia · Zbl 0555.46001
[15] Corless, R. M.; Gonnet, G. H.; Hare, D. E. G.; Jeffrey, D. J.; Knuth, D. E., On the Lambert \(W\) function, Advances in Computational Mathematics, 5, 4, 329-359 (1996) · Zbl 0863.65008 · doi:10.1007/BF02124750
[16] Corless, R. M.; Gonnet, G. H.; Hare, D. E. G.; Jeffrey, D. J., Lambert’s \(W\) function in Maple, The Maple Technical Newsletter, 9, 12-22 (1993)
[17] Apartsyn, A. S., Multilinear Volterra equations of the first kind, Automation and Remote Control, 65, 2, 263-269 (2004) · Zbl 1065.26020 · doi:10.1023/B:AURC.0000014723.06564.f4
[18] Apartsyn, A. S., Polilinear integral Volterra equations of the first kind: the elements of the theory and numeric methods, Izvestiya Irkutskogo Gosudarstvennogo Universiteta: Series Mathematics, 1, 13-41 (2007)
[19] Apartsin, A. S., On the convergence of numerical methods for solving a Volterra bilinear equations of the first kind, Computational Mathematics and Mathematical Physics, 47, 8, 1323-1331 (2007) · Zbl 07811694 · doi:10.1134/S0965542507080106
[20] Apartsin, A. S., Multilinear Volterra equations of the first kind and some problems of control, Automation and Remote Control, 69, 4, 545-558 (2008) · Zbl 1156.93006 · doi:10.1134/S0005117908040012
[21] Apartsyn, A. S., Unimprovable estimates of solutions for some classes of integral inequalities, Journal of Inverse and Ill-Posed Problems, 16, 7, 651-680 (2008) · Zbl 1167.26006 · doi:10.1515/JIIP.2008.040
[22] Apartsyn, A. S., Polynomial Volterra integral equations of the first kind and the Lambert function, Proceedings of the Institute of Mathematics and Mechanics Ural Branch of RAS, 18, 1, 69-81 (2012) · Zbl 1287.45001
[23] Sidorov, D. N., On parametric families of solutions of Volterra integral equations of the first kind with piecewise smooth kernel, Differential Equations, 49, 2, 210-216 (2013) · Zbl 1348.45002 · doi:10.1134/S0012266113020079
[24] Volterra, V., Theory of Functionals and of Integral and Integro-Differential Equations (1982), Moscow, Russia: Nauka, Moscow, Russia
[25] Magnitsky, N. A., The existence of multiparameter families of solutions of a Volterra integral equation of the first kind, Reports of the USSR Academy of Sciences, 235, 4, 772-774 (1977)
[26] Magnitsky, N. A., Linear Volterra integral equations of the first and third kinds, Computational Mathematics and Mathematical Physics, 19, 4, 970-988 (1979) · Zbl 0436.45003
[27] Magnitsky, N. A., The asymptotics of solutions to the Volterra integral equation of the first kind, Reports of the USSR Academy of Sciences, 269, 1, 29-32 (1983)
[28] Magnitsky, N. A., Asymptotic Methods for Analysis of Non-Stationary Controlled Systems (1992), Moscow, Russia: Nauka, Moscow, Russia · Zbl 0774.49001
[29] Apartsyn, A. S., On one approach to modeling of developing systems, Proceedings of the 6th International Workshop, “Generalized Statments and Solutions of Control Problems”
[30] Apartsin, A. S.; Sidler, I. V., Using the nonclassical Volterra equations of the first kind to model the developing systems, Automation and Remote Control, 74, 6, 899-910 (2013) · Zbl 1297.45002 · doi:10.1134/S0005117913060015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.