×

SVEIRS: A new epidemic disease model with time delays and impulsive effects. (English) Zbl 1474.92128

Summary: We first propose a new epidemic disease model governed by system of impulsive delay differential equations. Then, based on theories for impulsive delay differential equations, we skillfully solve the difficulty in analyzing the global dynamical behavior of the model with pulse vaccination and impulsive population input effects at two different periodic moments. We prove the existence and global attractivity of the “infection-free” periodic solution and also the permanence of the model. We then carry out numerical simulations to illustrate our theoretical results, showing us that time delay, pulse vaccination, and pulse population input can exert a significant influence on the dynamics of the system which confirms the availability of pulse vaccination strategy for the practical epidemic prevention. Moreover, it is worth pointing out that we obtained an epidemic control strategy for controlling the number of population input.

MSC:

92D30 Epidemiology
34K45 Functional-differential equations with impulses
34K60 Qualitative investigation and simulation of models involving functional-differential equations

References:

[1] Piyawong, W.; Twizell, E. H.; Gumel, A. B., An unconditionally convergent finite-difference scheme for the SIR model, Applied Mathematics and Computation, 146, 2-3, 611-625 (2003) · Zbl 1026.92041 · doi:10.1016/S0096-3003(02)00607-0
[2] Korobeinikov, A.; Wake, G. C., Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models, Applied Mathematics Letters, 15, 8, 955-960 (2002) · Zbl 1022.34044 · doi:10.1016/S0893-9659(02)00069-1
[3] Beretta, E.; Takeuchi, Y., Convergence results in SIR epidemic models with varying population sizes, Nonlinear Analysis: Theory, Methods & Applications, 28, 12, 1909-1921 (1997) · Zbl 0879.34054 · doi:10.1016/S0362-546X(96)00035-1
[4] Beretta, E.; Takeuchi, Y., Global stability of an SIR epidemic model with time delays, Journal of Mathematical Biology, 33, 3, 250-260 (1995) · Zbl 0811.92019 · doi:10.1007/BF00169563
[5] Ma, W.; Song, M.; Takeuchi, Y., Global stability of an SIR epidemic model with time delay, Applied Mathematics Letters, 17, 10, 1141-1145 (2004) · Zbl 1071.34082 · doi:10.1016/j.aml.2003.11.005
[6] Jin, Z.; Ma, Z., The stability of an SIR epidemic model with time delays, Mathematical Biosciences and Engineering, 3, 1, 101-109 (2006) · Zbl 1089.92045
[7] Hui, J.; Chen, L.-S., Impulsive vaccination of SIR epidemic models with nonlinear incidence rates, Discrete and Continuous Dynamical Systems B, 4, 3, 595-605 (2004) · Zbl 1100.92040 · doi:10.3934/dcdsb.2004.4.595
[8] Meng, X.; Chen, L., The dynamics of a new SIR epidemic model concerning pulse vaccination strategy, Applied Mathematics and Computation, 197, 2, 582-597 (2008) · Zbl 1131.92056 · doi:10.1016/j.amc.2007.07.083
[9] Zeng, G. Z.; Chen, L. S.; Sun, L. H., Complexity of an SIR epidemic dynamics model with impulsive vaccination control, Chaos, Solitons & Fractals, 26, 2, 495-505 (2005) · Zbl 1065.92050 · doi:10.1016/j.chaos.2005.01.021
[10] D’Onofrio, A., Pulse vaccination strategy in SIR epidemic model, Mathematical and Computer Modelling, 13, 15-26 (2002) · Zbl 1025.92011
[11] Yuan, S. L.; Ma, Z. E.; Han, M. A., Global stability of an SIS epidemic model with time delays, Acta Mathematica Scientia A, 25, 3, 349-356 (2005) · Zbl 1070.92045
[12] Yuan, S.-L.; Ma, Z.-E.; Jin, Z., Persistence and periodic solution on a nonautonomous SIS model with delays, Acta Mathematicae Applicatae Sinica, 19, 1, 167-176 (2003) · Zbl 1036.34074 · doi:10.1007/s10255-003-0093-3
[13] Kühnert, D.; Stadler, T.; Vaughan, T. G.; Drummond, A. J., Simultaneous reconstruction of evolutionary history and epidemiological dynamics from viral sequences with the birth-death SIR model, Journal of the Royal Society Interface, 11, 94 (2014) · doi:10.1098/​rsif.2013.1106
[14] Kar, T. K.; Mondal, P. K., Global dynamics and bifurcation in delayed SIR epidemic model, Nonlinear Analysis: Real World Applications, 12, 4, 2058-2068 (2011) · Zbl 1235.34216 · doi:10.1016/j.nonrwa.2010.12.021
[15] Huang, G.; Takeuchi, Y., Global analysis on delay epidemiological dynamic models with nonlinear incidence, Journal of Mathematical Biology, 63, 1, 125-139 (2011) · Zbl 1230.92048 · doi:10.1007/s00285-010-0368-2
[16] Vargas-De-León, C., On the global stability of SIS, SIR and SIRS epidemic models with standard incidence, Chaos, Solitons & Fractals, 44, 12, 1106-1110 (2011) · Zbl 1355.92130 · doi:10.1016/j.chaos.2011.09.002
[17] Kar, T. K.; Batabyal, A., Stability analysis and optimal control of an SIR epidemic model with vaccination, BioSystems, 104, 2-3, 127-135 (2011) · doi:10.1016/j.biosystems.2011.02.001
[18] Hu, Z.; Ma, W.; Ruan, S., Analysis of SIR epidemic models with nonlinear incidence rate and treatment, Mathematical Biosciences, 238, 1, 12-20 (2012) · Zbl 1250.92031 · doi:10.1016/j.mbs.2012.03.010
[19] Song, X.; Jiang, Y.; Wei, H., Analysis of a saturation incidence SVEIRS epidemic model with pulse and two time delays, Applied Mathematics and Computation, 214, 2, 381-390 (2009) · Zbl 1168.92326 · doi:10.1016/j.amc.2009.04.005
[20] Zhang, T.; Teng, Z., Global behavior and permanence of SIRS epidemic model with time delay, Nonlinear Analysis: Real World Applications, 9, 4, 1409-1424 (2008) · Zbl 1154.34390 · doi:10.1016/j.nonrwa.2007.03.010
[21] Li, M. Y.; Smith, H. L.; Wang, L., Global dynamics an SEIR epidemic model with vertical transmission, SIAM Journal on Applied Mathematics, 62, 1, 58-69 (2001) · Zbl 0991.92029 · doi:10.1137/S0036139999359860
[22] Wang, W., Global behavior of an SEIRS epidemic model with time delays, Applied Mathematics Letters, 15, 4, 423-428 (2002) · Zbl 1015.92033 · doi:10.1016/S0893-9659(01)00153-7
[23] Zhen, J.; Ma, Z.; Han, M., Global stability of an SIRS epidemic model with delays, Acta Mathematica Scientia B, 26, 2, 291-306 (2006) · Zbl 1090.92044 · doi:10.1016/S0252-9602(06)60051-9
[24] Li, G.; Jin, Z., Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period, Chaos, Solitons & Fractals, 25, 5, 1177-1184 (2005) · Zbl 1065.92046 · doi:10.1016/j.chaos.2004.11.062
[25] Cooke, K. L.; van den Driessche, P., Analysis of an SEIRS epidemic model with two delays, Journal of Mathematical Biology, 35, 2, 240-260 (1996) · Zbl 0865.92019 · doi:10.1007/s002850050051
[26] Gao, S.; Teng, Z.; Xie, D., The effects of pulse vaccination on SEIR model with two time delays, Applied Mathematics and Computation, 201, 1-2, 282-292 (2008) · Zbl 1143.92024 · doi:10.1016/j.amc.2007.12.019
[27] Gao, S.; Chen, L.; Teng, Z., Impulsive vaccination of an SEIRS model with time delay and varying total population size, Bulletin of Mathematical Biology, 69, 2, 731-745 (2007) · Zbl 1139.92314 · doi:10.1007/s11538-006-9149-x
[28] Meng, X.; Chen, L.; Cheng, H., Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination, Applied Mathematics and Computation, 186, 1, 516-529 (2007) · Zbl 1111.92049 · doi:10.1016/j.amc.2006.07.124
[29] Zhang, T.; Teng, Z., Pulse vaccination delayed SEIRS epidemic model with saturation incidence, Applied Mathematical Modelling, 32, 7, 1403-1416 (2008) · Zbl 1182.92064 · doi:10.1016/j.apm.2007.06.005
[30] Jiang, Y.; Mei, L.; Song, X., Global analysis of a delayed epidemic dynamical system with pulse vaccination and nonlinear incidence rate, Applied Mathematical Modelling, 35, 10, 4865-4876 (2011) · Zbl 1228.34102 · doi:10.1016/j.apm.2011.03.044
[31] Cooke, K. L., Stability analysis for a vector disease model, The Rocky Mountain Journal of Mathematics, 9, 1, 31-42 (1979) · Zbl 0423.92029 · doi:10.1216/RMJ-1979-9-1-31
[32] Takeuchi, Y.; Ma, W.; Beretta, E., Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear Analysis: Theory, Methods & Applications, 42, 6, 931-947 (2000) · Zbl 0967.34070 · doi:10.1016/S0362-546X(99)00138-8
[33] Liu, W.-M.; Hethcote, H. W.; Levin, S. A., Dynamical behavior of epidemiological models with nonlinear incidence rates, Journal of Mathematical Biology, 25, 4, 359-380 (1987) · Zbl 0621.92014 · doi:10.1007/BF00277162
[34] Liu, W.-M.; Levin, S. A.; Iwasa, Y., Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, Journal of Mathematical Biology, 23, 2, 187-240 (1986) · Zbl 0582.92023 · doi:10.1007/BF00276956
[35] Meng, X.; Chen, L.; Wu, B., A delay SIR epidemic model with pulse vaccination and incubation times, Nonlinear Analysis: Real World Applications, 11, 1, 88-98 (2010) · Zbl 1184.92044 · doi:10.1016/j.nonrwa.2008.10.041
[36] Al-Showaikh, F. N. M.; Twizell, E. H., One-dimensional measles dynamics, Applied Mathematics and Computation, 152, 1, 169-194 (2004) · Zbl 1047.92040 · doi:10.1016/S0096-3003(03)00554-X
[37] Greenhalgh, D., Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity, Mathematical and Computer Modelling, 25, 2, 85-107 (1997) · Zbl 0877.92023 · doi:10.1016/S0895-7177(97)00009-5
[38] d’Onofrio, A., Mixed pulse vaccination strategy in epidemic model with realistically distributed infectious and latent times, Applied Mathematics and Computation, 151, 1, 181-187 (2004) · Zbl 1043.92033 · doi:10.1016/S0096-3003(03)00331-X
[39] Lakshmikantham, V.; Baĭnov, D. D.; Simeonov, P. S., Theory of Impulsive Differential Equations. Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics, 6 (1989), Singapore: World Scientific, Singapore · Zbl 0719.34002
[40] Bainov, D.; Simeonov, P., System with Impulsive Effect: Stability, Theory and Applications (1989), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0676.34035
[41] Kuang, Y., Delay Differential Equations with Applications in Population Dynamics. Delay Differential Equations with Applications in Population Dynamics, Mathematics in Science and Engineering, 191 (1993), San Diego, Calif, USA: Academic Press, San Diego, Calif, USA · Zbl 0777.34002
[42] Zhang, T.; Meng, X.; Song, Y., The dynamics of a high-dimensional delayed pest management model with impulsive pesticide input and harvesting prey at different fixed moments, Nonlinear Dynamics, 64, 1-2, 1-12 (2011) · Zbl 1280.34078 · doi:10.1007/s11071-010-9840-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.