×

Fixed points of \(\alpha\)-admissible mappings on partial metric spaces. (English) Zbl 1474.54153

Summary: In this paper, a general class of \(\alpha\)-admissible contractions on partial metric spaces is introduced. Fixed point theorems for these contractions on partial metric spaces and their consequences are stated and proved. Illustrative example is presented.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
54E40 Special maps on metric spaces
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Matthews, S. G., Partial metric topology, Research Report, 212 (1992), Coventry, UK: Department of Computer Science, University of Warwick, Coventry, UK · Zbl 0911.54025
[2] Matthews, S. G., Partial metric topology, Proceedings of the 8th Summer Conference on General Topology and Applications, Annals of the New York Academi of Sciences · Zbl 0911.54025
[3] Oltra, S.; Valero, O., Banach’s fixed point theorem for partial metric spaces, Rendiconti dell’Istituto di Matematica dell’Universit di Trieste, 36, 1-2, 17-26 (2004) · Zbl 1080.54030
[4] Valero, O., On Banach fixed point theorems for partial metric spaces, Applied General Topology, 6, 2, 229-240 (2005) · Zbl 1087.54020 · doi:10.4995/agt.2005.1957
[5] Altun, I.; Sola, F.; Simsek, H., Generalized contractions on partial metric spaces, Topology and its Applications, 157, 18, 2778-2785 (2010) · Zbl 1207.54052 · doi:10.1016/j.topol.2010.08.017
[6] Altun, I.; Erduran, A., Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory and Applications, 2011 (2011) · Zbl 1207.54051 · doi:10.1155/2011/508730
[7] Abdeljawad, T.; Karapnar, E.; Taş, K., Existence and uniqueness of a common fixed point on partial metric spaces, Applied Mathematics Letters, 24, 11, 1900-1904 (2011) · Zbl 1230.54032 · doi:10.1016/j.aml.2011.05.014
[8] Karapınar, E.; Erhan, İ. M., Fixed point theorems for operators on partial metric spaces, Applied Mathematics Letters, 24, 11, 1894-1899 (2011) · Zbl 1229.54056 · doi:10.1016/j.aml.2011.05.013
[9] Karapinar, E., Generalizations of Caristi Kirk’s theorem on partial metric spaces, Fixed Point Theory and Applications, 2011, article 4 (2011) · Zbl 1281.54027
[10] Karapınar, E.; Erhan, I. M.; Ulus, A. Y., Fixed point theorem for cyclic maps on partial metric spaces, Applied Mathematics & Information Sciences, 6, 2, 239-244 (2012)
[11] Aydi, H.; Karapınar, E., A Meir-Keeler common type fixed point theorem on partial metric spaces, Fixed Point Theory and Applications, 2012, article 26 (2012) · Zbl 1274.54112 · doi:10.1186/1687-1812-2012-26
[12] Khan, M. S.; Swaleh, M.; Sessa, S., Fixed point theorems by altering distances between the points, Bulletin of the Australian Mathematical Society, 30, 1, 1-9 (1984) · Zbl 0553.54023 · doi:10.1017/S0004972700001659
[13] Samet, B.; Vetro, C.; Vetro, P., Fixed point theorems for α \(\psi \)-contractive type mappings, Nonlinear Analysis: Theory, Methods & Applications, 75, 4, 2154-2165 (2012) · Zbl 1242.54027 · doi:10.1016/j.na.2011.10.014
[14] Karap{\i}nar, E.; Samet, B., Generalized α-\( \psi\) contractive type mappings and related fixed point theorems with applications, Abstract and Applied Analysis, 2012 (2012) · Zbl 1310.54038 · doi:10.1186/1029-242X-2014-36
[15] Karapınar, E.; Kumam, P.; Salimi, P., On α-\( \psi \)-Meir-Keeler contractive mappings, Fixed Point Theory and Applications, 2013, article 94 (2013) · Zbl 1423.54083 · doi:10.1186/1687-1812-2013-94
[16] Alsulami, H. H.; Gülyaz, S.; Karapınar, E.; Erhan, İ. M., Fixed point theorems for a class of α-admissible contractions and applications to boundary value problem, Abstract and Applied Analysis, 2014 (2014) · Zbl 1469.54048 · doi:10.1155/2014/187031
[17] Samet, B., Fixed points for α-\(ψ\)-contractive mappings with an application to quadratic integral equations, Electronic Journal of Differential Equations, 2014, 152, 1-18 (2014) · Zbl 1315.54043
[18] Yan, F.; Su, Y.; Feng, Q., A new contraction mapping principle in partially ordered metric spaces and applications to ordinary differential equations, Fixed Point Theory and Applications, 2012 (2012) · Zbl 1308.54040 · doi:10.1186/1687-1812-2012-152
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.