×

Shape-preserving and convergence properties for the \(q\)-Szász-Mirakjan operators for fixed \(q \in(0,1)\). (English) Zbl 1474.41070

Summary: We introduce a \(q\)-generalization of Szász-Mirakjan operators \(S_{n, q}\) and discuss their properties for fixed \(q \in(0,1)\). We show that the \(q\)-Szász-Mirakjan operators \(S_{n, q}\) have good shape-preserving properties. For example, \(S_{n, q}\) are variation-diminishing, and preserve monotonicity, convexity, and concave modulus of continuity. For fixed \(q \in(0,1)\), we prove that the sequence \(\{S_{n, q} \left(f\right) \}\) converges to \(B_{\infty, q}(f)\) uniformly on \([0,1]\) for each \(f \in C [0, 1 /(1 - q)]\), where \(B_{\infty, q}\) is the limit \(q\)-Bernstein operator. We obtain the estimates for the rate of convergence for \(\{S_{n, q} \left(f\right) \}\) by the modulus of continuity of \(f\), and the estimates are sharp in the sense of order for Lipschitz continuous functions.

MSC:

41A36 Approximation by positive operators
41A29 Approximation with constraints
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Phillips, G. M., Bernstein polynomials based on the \(q\)-integers, Annals of Numerical Mathematics, 4, 1-4, 511-518 (1997) · Zbl 0881.41008
[2] Il’inskiia, A.; Ostrovska, S., Convergence of generalized Bernstein polynomials, Journal of Approximation Theory, 116, 1, 100-112 (2002) · Zbl 0999.41007 · doi:10.1006/jath.2001.3657
[3] Wang, H., Properties of convergence for the \(q\)-Meyer-König and Zeller operators, Journal of Mathematical Analysis and Applications, 335, 2, 1360-1373 (2007) · Zbl 1129.41010 · doi:10.1016/j.jmaa.2007.01.103
[4] Ostrovska, S., On the limit \(q\)-Bernstein operator, Mathematica Balkanica, 18, 1-2, 165-172 (2004) · Zbl 1081.41020
[5] Videnskii, V. S., On some classes of \(q\)-parametric positive linear operators, Selected Topics in Complex Analysis. Selected Topics in Complex Analysis, Operator Theory: Advances and Applications, 158, 213-222 (2005), Basel, Switzerland: Birkhäuser, Basel, Switzerland · Zbl 1088.41008 · doi:10.1007/3-7643-7340-7_15
[6] Aral, A., A generalization of Szász-Mirakyan operators based on \(q\)-integers, Mathematical and Computer Modelling, 47, 9-10, 1052-1062 (2008) · Zbl 1144.41303 · doi:10.1016/j.mcm.2007.06.018
[7] Lupas, A., A \(q\)-analogue of the Bernstein operator, Proceedings of the University of Cluj-Napoca Seminar on Numerical and Statistical Calculus · Zbl 0684.41014
[8] Lewanowicz, S.; Woźny, P., Generalized Bernstein polynomials, BIT Numerical Mathematics, 44, 1, 63-78 (2004) · Zbl 1045.41003 · doi:10.1023/B:BITN.0000025086.89121.d8
[9] Derriennic, M.-M., Modified Bernstein polynomials and Jacobi polynomials in \(q\)-calculus, Rendiconti del Circolo Matematico di Palermo, 269-290 (2005) · Zbl 1142.41002
[10] Trif, T., Meyer-König and Zeller operators based on the \(q\)-integers, Revue d’Analyse Numérique et de Théorie de l’Approximation, 29, 2, 221-229 (2000) · Zbl 1023.41022
[11] Aral, A.; Doğru, O., Bleimann, Butzer, and Hahn operators based on the \(q\)-integers, Journal of Inequalities and Applications, 2007 (2007) · Zbl 1133.41001 · doi:10.1155/2007/79410
[12] Aral, A.; Gupta, V., The \(q\)-derivative and applications to \(q\)-Szász Mirakyan operators, Calcolo, 43, 3, 151-170 (2006) · Zbl 1121.41016 · doi:10.1007/s10092-006-0119-3
[13] Radu, C., On statistical approximation of a general class of positive linear operators extended in \(q\)-calculus, Applied Mathematics and Computation, 215, 6, 2317-2325 (2009) · Zbl 1179.41025 · doi:10.1016/j.amc.2009.08.023
[14] Mahmudov, N. I., On \(q\)-parametric Szász-Mirakjan operators, Mediterranean Journal of Mathematics, 7, 3, 297-311 (2010) · Zbl 1206.41015 · doi:10.1007/s00009-010-0037-0
[15] Mahmudov, N. I., Approximation by the \(q\)-Szász-Mirakjan operators, Abstract and Applied Analysis, 2012 (2012) · Zbl 1258.41010 · doi:10.1155/2012/754217
[16] Ostrovska, S., \(q\)-Bernstein polynomials and their iterates, Journal of Approximation Theory, 123, 2, 232-255 (2003) · Zbl 1093.41013 · doi:10.1016/S0021-9045(03)00104-7
[17] Ostrovska, S., On the \(q\)-Bernstein polynomials, Advanced Studies in Contemporary Mathematics, 11, 2, 193-204 (2005) · Zbl 1116.41013
[18] Ostrovska, S., The first decade of the \(q\)-Bernstein polynomials: results and perspectives, Journal of Mathematical Analysis and Approximation Theory, 2, 1, 35-51 (2007) · Zbl 1159.41301
[19] Phillips, G. M., Interpolation and Approximation by Polynomials (2003), Springer · Zbl 1023.41002
[20] Phillips, G. M., A survey of results on the \(q\)-Bernstein polynomials, IMA Journal of Numerical Analysis, 30, 1, 277-288 (2010) · Zbl 1191.41002 · doi:10.1093/imanum/drn088
[21] Wang, H., Korovkin-type theorem and application, Journal of Approximation Theory, 132, 2, 258-264 (2005) · Zbl 1118.41015 · doi:10.1016/j.jat.2004.12.010
[22] Wang, H., Voronovskaya-type formulas and saturation of convergence for \(q\)-Bernstein polynomials for \(0 < q < 1\), Journal of Approximation Theory, 145, 2, 182-195 (2007) · Zbl 1112.41016 · doi:10.1016/j.jat.2006.08.005
[23] Wang, H.; Meng, F., The rate of convergence of \(q\)-Bernstein polynomials for \(0 < q < 1\), Journal of Approximation Theory, 136, 2, 151-158 (2005) · Zbl 1082.41007 · doi:10.1016/j.jat.2005.07.001
[24] Wang, H.; Wu, X., Saturation of convergence for \(q\)-Bernstein polynomials in the case \(q \geq 1\), Journal of Mathematical Analysis and Applications, 337, 1, 744-750 (2008) · Zbl 1122.33014 · doi:10.1016/j.jmaa.2007.04.014
[25] Pu, F., On the q-Szász-Mirakyan operators [M.S. thesis] (2005), Beijing, China: Capital Normal University, Beijing, China
[26] Cottin, C.; Gavrea, I.; Gonska, H. H.; Kacsó, D. P.; Zhou, D.-X., Global smoothness preservation and the variation-diminishing property, Journal of Inequalities and Applications, 4, 2, 91-114 (1999) · Zbl 0970.41015 · doi:10.1155/S1025583499000314
[27] DeVore, R. A.; Lorentz, G. G., Constructive Approximation (1993), Springer · Zbl 0797.41016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.