Razavi, M. Kafaei; Kerayechian, A.; Gachpazan, M.; Shateyi, S. A new iterative method for finding approximate inverses of complex matrices. (English) Zbl 1474.65077 Abstr. Appl. Anal. 2014, Article ID 563787, 7 p. (2014). Summary: This paper presents a new iterative method for computing the approximate inverse of nonsingular matrices. The analytical discussion of the method is included to demonstrate its convergence behavior. As a matter of fact, it is proven that the suggested scheme possesses tenth order of convergence. Finally, its performance is illustrated by numerical examples on different matrices. Cited in 3 Documents MSC: 65F10 Iterative numerical methods for linear systems 15A09 Theory of matrix inversion and generalized inverses 65F08 Preconditioners for iterative methods Software:Mathematica × Cite Format Result Cite Review PDF Full Text: DOI OA License References: [1] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), SIAM · Zbl 1002.65042 · doi:10.1137/1.9780898718003 [2] Soleimani, F.; Soleymani, F.; Cordero, A.; Torregrosa, J. R., On the extension of Householder’s method for weighted Moore-Penrose inverse, Applied Mathematics and Computation, 231, 407-413 (2014) · Zbl 1410.65082 · doi:10.1016/j.amc.2014.01.021 [3] Schulz, G., Iterative Berechnung der Reziproken matrix, Zeitschrift für Angewandte Mathematik und Mechanik, 13, 57-59 (1933) · JFM 59.0535.04 [4] Ben-Israel, A.; Greville, T. N. E., Generalized Inverses. Generalized Inverses, Berlin, Germany (2003), Springer · Zbl 1026.15004 [5] Benzi, M., Preconditioning techniques for large linear systems: a survey, Journal of Computational Physics, 182, 2, 418-477 (2002) · Zbl 1015.65018 · doi:10.1006/jcph.2002.7176 [6] Li, H.-B.; Huang, T.-Z.; Zhang, Y.; Liu, V.-P.; Gu, T.-V., Chebyshev-type methods and preconditioning techniques, Applied Mathematics and Computation, 218, 2, 260-270 (2011) · Zbl 1226.65024 · doi:10.1016/j.amc.2011.05.036 [7] Pan, V. Y.; Van Barel, M.; Wang, X.; Codevico, G., Iterative inversion of structured matrices, Theoretical Computer Science, 315, 2-3, 581-592 (2004) · Zbl 1059.65032 · doi:10.1016/j.tcs.2004.01.008 [8] Li, W.; Li, Z., A family of iterative methods for computing the approximate inverse of a square matrix and inner inverse of a non-square matrix, Applied Mathematics and Computation, 215, 9, 3433-3442 (2010) · Zbl 1185.65057 · doi:10.1016/j.amc.2009.10.038 [9] Krishnamurthy, E. V.; Sen, S. K., Numerical Algorithms: Computations in Science and Engineering (2007), New Delhi, India: Affiliated East-West Press, New Delhi, India [10] Toutounian, F.; Soleymani, F., An iterative method for computing the approximate inverse of a square matrix and the Moore-Penrose inverse of a non-square matrix, Applied Mathematics and Computation, 224, 671-680 (2013) · Zbl 1336.65048 · doi:10.1016/j.amc.2013.08.086 [11] Pan, V. Y.; Schreiber, R., An improved Newton iteration for the generalized inverse of a matrix, with applications, SIAM: Journal on Scientific and Statistical Computing, 12, 5, 1109-1130 (1991) · Zbl 0733.65023 · doi:10.1137/0912058 [12] Isaacson, E.; Keller, H. B., Analysis of Numerical Methods (1966), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0168.13101 [13] Weiguo, L.; Juan, L.; Tiantian, Q., A family of iterative methods for computing Moore-Penrose inverse of a matrix, Linear Algebra and Its Applications, 438, 1, 47-56 (2013) · Zbl 1258.65035 · doi:10.1016/j.laa.2012.08.004 [14] Soleymani, F., A fast convergent iterative solver for approximate inverse of matrices, Numerical Linear Algebra with Applications, 21, 439-452 (2014) · Zbl 1340.65051 · doi:10.1002/nla.1890 [15] Traub, J. F., Iterative Methods for the Solution of Equations (1964), New York, NY, USA: Prentice Hall, New York, NY, USA · Zbl 0121.11204 [17] Wolfram, S., The Mathematica Book (2003), Wolfram Media [18] Grosz, L., Preconditioning by incomplete block elimination, Numerical Linear Algebra with Applications, 7, 7-8, 527-541 (2000) · Zbl 1051.65055 · doi:10.1002/1099-1506(200010/12)7:7/8<527::AID-NLA211>3.3.CO;2-F This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.