Kutbi, Marwan Amin; Hussain, Nawab; Rezaei Roshan, Jamal; Parvaneh, Vahid Coupled and tripled coincidence point results with application to Fredholm integral equations. (English) Zbl 1469.54140 Abstr. Appl. Anal. 2014, Article ID 568718, 18 p. (2014). Summary: The aim of this paper is to define weak \(\alpha\)-\(\psi\)-\(\varphi\)-contractive mappings and to establish coupled and tripled coincidence point theorems for such mappings defined on \(G_b\)-metric spaces using the concept of rectangular \(G\)-\(\alpha\)-admissibility. As an application, we derive new coupled and tripled coincidence point results for weak \(\psi\)-\(\varphi\)-contractive mappings in partially ordered \(G_b\)-metric spaces. Our results are generalizations and extensions of some recent results in the literature. We also present an example as well as an application to nonlinear Fredholm integral equations in order to illustrate the effectiveness of our results. Cited in 3 Documents MSC: 54H25 Fixed-point and coincidence theorems (topological aspects) 54E40 Special maps on metric spaces 45B05 Fredholm integral equations × Cite Format Result Cite Review PDF Full Text: DOI OA License References: [1] Mustafa, Z.; Sims, B., A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis, 7, 2, 289-297 (2006) · Zbl 1111.54025 [2] Aghajani, A.; Abbas, M.; Roshan, J. R., Common fixed point of generalized weak contractive mappings in partially ordered \(G_b\)-metric spaces · Zbl 1462.54034 [3] Czerwik, S., Contraction mappings in \(b\)-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1, 5-11 (1993) · Zbl 0849.54036 [4] Mustafa, Z.; Roshan, J. R.; Parvaneh, V., Coupled coincidence point results for \((\psi, \phi)\)-weakly contractive mappings in partially ordered \(G_b\)-metric spaces, Fixed Point Theory and Applications, 2013, article 206 (2013) · Zbl 1470.54087 · doi:10.1186/1687-1812-2013-206 [5] Hussain, N.; Dorić, D.; Kadelburg, Z.; Radenović, S., Suzuki-type fixed point results in metric type spaces, Fixed Point Theory and Applications, 2012, article 126 (2012) · Zbl 1274.54128 · doi:10.1186/1687-1812-2012-126 [6] Aydi, H.; Postolache, M.; Shatanawi, W., Coupled fixed point results for \((\psi, \varphi)\)-weakly contractive mappings in ordered \(G\)-metric spaces, Computers & Mathematics with Applications, 63, 1, 298-309 (2012) · Zbl 1238.54020 · doi:10.1016/j.camwa.2011.11.022 [7] Bhaskar, T. G.; Lakshmikantham, V., Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis: Theory, Methods & Applications, 65, 7, 1379-1393 (2006) · Zbl 1106.47047 · doi:10.1016/j.na.2005.10.017 [8] Cho, Y. J.; Shah, M. H.; Hussain, N., Coupled fixed points of weakly \(F\)-contractive mappings in topological spaces, Applied Mathematics Letters, 24, 7, 1185-1190 (2011) · Zbl 1214.54033 · doi:10.1016/j.aml.2011.02.004 [9] Choudhury, B. S.; Kundu, A., A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Analysis: Theory, Methods & Applications, 73, 8, 2524-2531 (2010) · Zbl 1229.54051 · doi:10.1016/j.na.2010.06.025 [10] Choudhury, B. S.; Maity, P., Coupled fixed point results in generalized metric spaces, Mathematical and Computer Modelling, 54, 1-2, 73-79 (2011) · Zbl 1225.54016 · doi:10.1016/j.mcm.2011.01.036 [11] Ćirić, L.; Damjanović, B.; Jleli, M.; Samet, B., Coupled fixed point theorems for generalized Mizoguchi-Takahashi contractions with applications, Fixed Point Theory and Applications, 2012, article 51 (2012) · Zbl 1273.54049 · doi:10.1186/1687-1812-2012-51 [12] Ding, H.-S.; Li, L.; Radenović, S., Coupled coincidence point theorems for generalized nonlinear contraction in partially ordered metric spaces, Fixed Point Theory and Applications, 2012, article 96 (2012) · Zbl 1420.54071 · doi:10.1186/1687-1812-2012-96 [13] Guo, D. J.; Lakshmikantham, V., Coupled fixed points of nonlinear operators with applications, Nonlinear Analysis: Theory, Methods & Applications, 11, 5, 623-632 (1987) · Zbl 0635.47045 · doi:10.1016/0362-546X(87)90077-0 [14] Hussain, N.; Abbas, M.; Azam, A.; Ahmad, J., Coupled coincidence point results for a generalized compatible pair with applications, Fixed Point Theory and Applications, 2014, article 62 (2014) · Zbl 1469.54111 · doi:10.1186/1687-1812-2014-62 [15] Hussain, N.; Salimi, P.; al-Mezel, S., Coupled fixed point results on quasi-Banach spaces with application to a system of integral equations, Fixed Point Theory and Applications, 2013, article 261 (2013) · Zbl 1476.47035 · doi:10.1186/1687-1812-2013-261 [16] Hussain, N.; Latif, A.; Shah, M. H., Coupled and tripled coincidence point results without compatibility, Fixed Point Theory and Applications, 2012, article 77 (2012) · Zbl 1457.54039 · doi:10.1186/1687-1812-2012-77 [17] Lakshmikantham, V.; Ćirić, L., Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis: Theory, Methods & Applications, 70, 12, 4341-4349 (2009) · Zbl 1176.54032 · doi:10.1016/j.na.2008.09.020 [18] Luong, N. V.; Thuan, N. X., Coupled fixed points in partially ordered metric spaces and application, Nonlinear Analysis: Theory, Methods & Applications, 74, 3, 983-992 (2011) · Zbl 1202.54036 · doi:10.1016/j.na.2010.09.055 [19] Nieto, J. J.; Rodríguez-López, R., Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Mathematica Sinica, 23, 12, 2205-2212 (2007) · Zbl 1140.47045 · doi:10.1007/s10114-005-0769-0 [20] Ran, A. C. M.; Reurings, M. C. B., A fixed point theorem in partially ordered sets and some applications to matrix equations, Proceedings of the American Mathematical Society, 132, 5, 1435-1443 (2004) · Zbl 1060.47056 · doi:10.1090/S0002-9939-03-07220-4 [21] Roshan, J. R.; Parvaneh, V.; Altun, I., Some coincidence point results in ordered \(b\)-metric spaces and applications in a system of integral equations, Applied Mathematics and Computation, 226, 725-737 (2014) · Zbl 1354.45010 · doi:10.1016/j.amc.2013.10.043 [22] Roshan, J. R.; Parvaneh, V.; Sedghi, S.; Shobkolaei, N.; Shatanawi, W., Common fixed points of almost generalized \((\psi, \varphi)_s\)-contractive mappings in ordered \(b\)-metric spaces, Fixed Point Theory and Applications, 2013, article 159 (2013) · Zbl 1295.54080 · doi:10.1186/1687-1812-2013-159 [23] Mursaleen, M.; Mohiuddine, S. A.; Agarwal, R. P., Coupled fixed point theorems for \(\alpha-\psi \)-contractive type mappings in partially ordered metric spaces, Fixed Point Theory and Applications, 2012, article 228 (2012) · Zbl 1293.54031 · doi:10.1186/1687-1812-2012-228 [24] Parvaneh, V.; Roshan, J. R.; Radenović, S., Existence of tripled coincidence points in ordered \(b\)-metric spaces and an application to a system of integral equations, Fixed Point Theory and Applications, 2013, article 130 (2013) · Zbl 1425.54030 · doi:10.1186/1687-1812-2013-130 [25] Berinde, V.; Borcut, M., Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Analysis: Theory, Methods & Applications, 74, 15, 4889-4897 (2011) · Zbl 1225.54014 · doi:10.1016/j.na.2011.03.032 [26] Borcut, M., Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces, Applied Mathematics and Computation, 218, 14, 7339-7346 (2012) · Zbl 1244.54086 · doi:10.1016/j.amc.2012.01.030 [27] Borcut, M.; Berinde, V., Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces, Applied Mathematics and Computation, 218, 10, 5929-5936 (2012) · Zbl 1262.54017 · doi:10.1016/j.amc.2011.11.049 [28] Choudhury, B. S.; Karapınar, E.; Kundu, A., Tripled coincidence point theorems for nonlinear contractions in partially ordered metric spaces, International Journal of Mathematics and Mathematical Sciences, 2012 (2012) · Zbl 1251.54040 · doi:10.1155/2012/329298 [29] Cho, Y. J.; Rhoades, B. E.; Saadati, R.; Samet, B.; Shatanawi, W., Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type, Fixed Point Theory and Applications, 2012, article 8 (2012) · Zbl 1348.54044 · doi:10.1186/1687-1812-2012-8 [30] Aydi, H.; Karapınar, E.; Shatanawi, W., Tripled coincidence point results for generalized contractions in ordered generalized metric spaces, Fixed Point Theory and Applications, 2012, article 101 (2012) · Zbl 1420.54070 · doi:10.1186/1687-1812-2012-101 [31] Samet, B.; Vetro, C.; Vetro, P., Fixed point theorems for \(\alpha-\psi \)-contractive type mappings, Nonlinear Analysis: Theory, Methods & Applications, 75, 4, 2154-2165 (2012) · Zbl 1242.54027 · doi:10.1016/j.na.2011.10.014 [32] Alghamdi, M. A.; Karapınar, E., \(G-\beta-\psi\) contractive-type mappings and related fixed point theorems, Journal of Inequalities and Applications, 2013, article 70 (2013) · Zbl 1452.54023 · doi:10.1186/1029-242X-2013-70 [33] Hussain, N.; al-Mezel, S.; Salimi, P., Fixed points for \(\psi \)-graphic contractions with application to integral equations, Abstract and Applied Analysis, 2013 (2013) · Zbl 1294.54026 · doi:10.1155/2013/575869 [34] Karapınar, E.; Kumam, P.; Salimi, P., On \(\alpha-\psi \)-Meir-Keeler contractive mappings, Fixed Point Theory and Applications, 2013, article 94 (2013) · Zbl 1423.54083 · doi:10.1186/1687-1812-2013-94 [35] Hussain, N.; Karapınar, E.; Salimi, P.; Vetro, P., Fixed point results for \(G^m\)-Meir-Keeler contractive and \(G-(\alpha, \psi)\)-Meir-Keeler contractive mappings, Fixed Point Theory and Applications, 2013, article 34 (2013) · Zbl 1293.54024 · doi:10.1186/1687-1812-2013-34 [36] Mustafa, Z.; Roshan, J. R.; Parvaneh, V., Existence of tripled coincidence point in ordered \(G_b\)-metric spaces and applications to a system of integral equations, Journal of Inequalities and Applications, 2013, article 453 (2013) · Zbl 1420.54080 · doi:10.1186/1029-242X-2013-453 [37] Berinde, V., Coupled fixed point theorems for \(ϕ\)-contractive mixed monotone mappings in partially ordered metric spaces, Nonlinear Analysis: Theory, Methods & Applications, 75, 6, 3218-3228 (2012) · Zbl 1250.54043 · doi:10.1016/j.na.2011.12.021 [38] Luong, N. V.; Thuan, N. X., Coupled fixed point theorems in partially ordered \(G\)-metric spaces, Mathematical and Computer Modelling, 55, 3-4, 1601-1609 (2012) · Zbl 1341.54033 · doi:10.1016/j.mcm.2011.10.058 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.