×

On the existence and uniqueness of \(R_v\)-generalized solution for Dirichlet problem with singularity on all boundary. (English) Zbl 1474.35331

Summary: The existence and uniqueness of the \(R_v\)-generalized solution for the first boundary value problem and a second order elliptic equation with coordinated and uncoordinated degeneracy of input data and with strong singularity solution on all boundary of a two-dimensional domain are established.

MSC:

35J75 Singular elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35J20 Variational methods for second-order elliptic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Assous, F.; Ciarlet, P.; Segré, J., Numerical solution to the time-dependent Maxwell equations in two-dimensional singular domains: the singular complement method, Journal of Computational Physics, 161, 1, 218-249 (2000) · Zbl 1007.78014 · doi:10.1006/jcph.2000.6499
[2] Assous, F.; Ciarlet, J.; Garcia, E.; Segré, J., Time-dependent Maxwell’s equations with charges in singular geometries, Computer Methods in Applied Mechanics and Engineering, 196, 1-3, 665-681 (2006) · Zbl 1121.78305 · doi:10.1016/j.cma.2006.07.007
[3] Costabel, M.; Dauge, M., Weighted regularization of Maxwell equations in polyhedral domains, Numerische Mathematik, 93, 2, 239-277 (2002) · Zbl 1019.78009 · doi:10.1007/s002110100388
[4] Costabel, M.; Dauge, M.; Schwab, C., Exponential convergence of hp-FEM for Maxwell equations with weighted regularization in polygonal domains, Mathematical Models & Methods in Applied Sciences, 15, 4, 575-622 (2005) · Zbl 1078.65089 · doi:10.1142/S0218202505000480
[5] Arroyo, D.; Bespalov, A.; Heuer, N., On the finite element method for elliptic problems with degenerate and singular coefficients, Mathematics of Computation, 76, 258, 509-537 (2007) · Zbl 1112.65116 · doi:10.1090/S0025-5718-06-01910-7
[6] Li, H.; Nistor, V., Analysis of a modified Schrödinger operator in 2D: regularity, index, and FEM, Journal of Computational and Applied Mathematics, 224, 1, 320-338 (2009) · Zbl 1165.65079 · doi:10.1016/j.cam.2008.05.009
[7] Rukavishnikov, V. A., On differentiability properties of an \(R_\upsilon \)-generalized solution of the Dirichlet problem, Soviet Mathematics. Doklady, 309, 6, 653-655 (1990) · Zbl 0711.35030
[8] Rukavishnikov, V. A., On the Dirichlet problem for a second-order elliptic equation with noncoordinated degeneration of the initial data, Differential Equations, 32, 3, 406-412 (1996) · Zbl 0886.35067
[9] Rukavishnikov, V. A.; Kuznetsova, E. V., A coercive estimate for a boundary value problem with noncoordinated degeneration of the input data, Differential Equations, 43, 4, 550-560 (2007) · Zbl 1178.35384 · doi:10.1134/S0012266107040131
[10] Rukavishnikov, V. A., Methods of numerical analysis for boundary value problems with strong singularity, Russian Journal of Numerical Analysis and Mathematical Modelling, 24, 6, 565-590 (2009) · Zbl 1182.65172 · doi:10.1515/RJNAMM.2009.035
[11] Rukavishnikov, V. A.; Rukavishnikova, H. I., The finite element method for a boundary value problem with strong singularity, Journal of Computational and Applied Mathematics, 234, 9, 2870-2882 (2010) · Zbl 1194.65137 · doi:10.1016/j.cam.2010.01.020
[12] Rukavishnikov, V. A.; Rukavishnikova, H. I., On the error estimation of the finite element method for the boundary value problems with singularity in the Lebesgue weighted space, Numerical Functional Analysis and Optimization. An International Journal, 34, 12, 1328-1347 (2013) · Zbl 1286.65146 · doi:10.1080/01630563.2013.809582
[13] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), Amsterdam, The Netherlands: North-Holland, Amsterdam, The Netherlands · Zbl 0383.65058
[14] Rukavishnikov, V. A.; Ereklintsev, A. G., On the coercivity of the \(R_v\)-generalized solution of the first boundary value problem with coordinated degeneration of the input data, Differential Equations, 41, 12, 1757-1767 (2005) · Zbl 1192.35081 · doi:10.1007/s10625-006-0012-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.