×

Sampled-data control of singular systems with time delays. (English) Zbl 1406.93199

Summary: This paper is concerned with sampled-data controller design for singular systems with time delay. It is assumed that the sampling periods are arbitrarily varying but bounded. A time-dependent Lyapunov function is proposed, which is positive definite at sampling times but not necessarily positive definite inside the sampling intervals. Combining input delay approach with Lyapunov method, sufficient conditions are derived which guarante that the singular system is regular, impulse free, and exponentially stable. Then, the existence conditions of desired sampled-data controller can be obtained, which are formulated in terms of strict linear matrix inequality. Finally, numerical examples are given to demonstrate the effectiveness and the benefits of the proposed method.

MSC:

93C57 Sampled-data control/observation systems
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Shi, P., Filtering on sampled-data systems with parametric uncertainty, IEEE Transactions on Automatic Control, 43, 7, 1022-1027 (1998) · Zbl 0951.93050 · doi:10.1109/9.701119
[2] Nguang, S. K.; Shi, P., Fuzzy \(H_\infty\) output feedback control of nonlinear systems under sampled measurements, Automatica, 39, 12, 2169-2174 (2003) · Zbl 1041.93033 · doi:10.1016/S0005-1098(03)00236-X
[3] Fridman, E.; Seuret, A.; Richard, J.-P., Robust sampled-data stabilization of linear systems: an input delay approach, Automatica, 40, 8, 1441-1446 (2004) · Zbl 1072.93018 · doi:10.1016/j.automatica.2004.03.003
[4] Hu, L.; Shi, P.; Frank, P. M., Robust sampled-data control for Markovian jump linear systems, Automatica, 42, 11, 2025-2030 (2006) · Zbl 1112.93057 · doi:10.1016/j.automatica.2006.05.029
[5] Gao, H.; Wu, J.; Shi, P., Robust sampled-data \(H_\infty\) control with stochastic sampling, Automatica, 45, 7, 1729-1736 (2009) · Zbl 1184.93039 · doi:10.1016/j.automatica.2009.03.004
[6] Liu, Q.; Wang, R.; Wu, D., Stability analysis for sampled-data systems based on multiple lyapunov functional method, International Journal of Innovative Computing Information and Control, 8, 9, 6345-6355 (2012)
[7] Mizumoto, I.; Fujimoto, Y.; Watanabe, N.; Iwai, Z., Fast rate adaptive output feedback control of multi-rate sampled systems with an adaptive output estimator, International Journal of Innovative Computing, Information and Control, 7, 7, 4377-4394 (2011)
[8] Seuret, A., A novel stability analysis of linear systems under asynchronous samplings, Automatica, 48, 1, 177-182 (2012) · Zbl 1244.93095 · doi:10.1016/j.automatica.2011.09.033
[9] Zhang, W.; Branicky, M. S.; Phillips, S. M., Stability of networked control systems, IEEE Control Systems Magazine, 21, 1, 84-97 (2001) · doi:10.1109/37.898794
[10] Hu, L.; Lam, J.; Cao, Y.; Shao, H., A linear matrix inequality (LMI) approach to robust H2 sampled-data control for linear uncertain systems, IEEE Transactions on Systems, Man, and Cybernetics B, 33, 1, 149-155 (2003) · doi:10.1109/TSMCB.2003.808181
[11] Fridman, E.; Seuret, A.; Richard, J.-P., Robust sampled-data stabilization of linear systems: an input delay approach, Automatica, 40, 8, 1441-1446 (2004) · Zbl 1072.93018 · doi:10.1016/j.automatica.2004.03.003
[12] Wu, Z.; Shi, P.; Su, H.; Chu, J., Stochastic synchronization of markovian jump neural networks with time-varying delay using sampled data, IEEE Transactions on Cybernetics, 43, 6, 1796-1806 (2013)
[13] Shen, B.; Wang, Z.; Liu, X., A stochastic sampled-data approach to distributed \(H_\infty\) filtering in sensor networks, IEEE Transactions on Circuits and Systems, 58, 9, 2237-2246 (2011) · Zbl 1468.93070 · doi:10.1109/TCSI.2011.2112594
[14] Shen, B.; Wang, Z.; Liu, X., Sampled-data synchronization control of dynamical networks with stochastic sampling, IEEE Transactions on Automatic Control, 57, 10, 2644-2650 (2012) · Zbl 1369.93047 · doi:10.1109/TAC.2012.2190179
[15] Li, J.; Wu, J.; Wang, S.; Cui, J., Stability and stabilization for sampled-data systems with probabilistic sampling, International Journal of Innovative Computing, Information and Control, 6, 7, 3299-3311 (2010)
[16] Fridman, E., A refined input delay approach to sampled-data control, Automatica, 46, 2, 421-427 (2010) · Zbl 1205.93099 · doi:10.1016/j.automatica.2009.11.017
[17] Fridman, E.; Blighovsky, A., Robust sampled-data control of a class of semilinear parabolic systems, Automatica, 48, 5, 826-836 (2012) · Zbl 1246.93076 · doi:10.1016/j.automatica.2012.02.006
[18] Wu, Z.; Shi, P.; Su, H.; Chu, J., Exponential synchronization of neural networks with discrete and distributed delays under time-varying sampling, IEEE Transactions on Neural Networks and Learning Systems, 23, 9, 1368-1376 (2012) · doi:10.1109/TNNLS.2012.2202687
[19] Wu, Z.; Shi, P.; Su, H.; Chu, J., Network-based robust passive control for fuzzy systems with randomly occurring uncertainties, IEEE Transactions on Fuzzy Systems, 21, 5, 966-971 (2012)
[20] Liu, K.; Fridman, E.; Hetel, L., Stability and \(L_2\)-gain analysis of networked control systems under Round-Robin scheduling: a time-delay approach, Systems & Control Letters, 61, 5, 666-675 (2012) · Zbl 1250.93106 · doi:10.1016/j.sysconle.2012.03.002
[21] Liu, K.; Fridman, E., Wirtinger’s inequality and Lyapunov-based sampled-data stabilization, Automatica, 48, 1, 102-108 (2012) · Zbl 1244.93094 · doi:10.1016/j.automatica.2011.09.029
[22] Seuret, A., A novel stability analysis of linear systems under asynchronous samplings, Automatica, 48, 1, 177-182 (2012) · Zbl 1244.93095 · doi:10.1016/j.automatica.2011.09.033
[23] Seuret, A., Stability analysis for sampled-data systems with a time-varying period, Proceedings of the 48th IEEE Conference on Decision and Control held jointly with 2009 28th Chinese Control Conference (CDC/CCC ’09) · doi:10.1109/CDC.2009.5400681
[24] Jiang, W.; Seuret, A., Improved stability analysis of networked control systems under asynchronous sampling and input delay, Proceedings of the 2nd IFAC Workshop on Distributed Estimation and Control in Networked Systems (NecSys ’10) · doi:10.3182/20100913-2-FR-4014.00073
[25] Wu, Z.-G.; Park, J. H.; Su, H.; Chu, J., Stochastic stability analysis for discrete-time singular Markov jump systems with time-varying delay and piecewise-constant transition probabilities, Journal of the Franklin Institute, 349, 9, 2889-2902 (2012) · Zbl 1264.93267 · doi:10.1016/j.jfranklin.2012.08.012
[26] Liu, P., Further results on the exponential stability criteria for time delay singular systems with delay-dependence, International Journal of Innovative Computing, Information and Control, 8, 6, 4015-4024 (2012)
[27] Liu, P., Further results on the exponential stability criteria for time delay singular systems with delay-dependence, International Journal of Innovative Computing, Information and Control, 8, 6, 4015-4024 (2012)
[28] Wanga, H.; Zhoua, B.; Lub, R.; Xueb, A., New stability and stabilization criteria for a class of fuzzy singular systems with time-varying delay, Journal of the Franklin Institute (2013)
[29] Wang, Y.; Wang, Q.; Zhou, P.; Duan, D., Robust guaranteed cost control for singular Markovian jump systems with time-varying delay, ISA Transactions, 51, 5, 559-565 (2012) · doi:10.1016/j.isatra.2012.04.005
[30] Wang, Y.; Shi, P.; Wang, Q.; Duan, D., Exponential \(H_\infty\) filtering for singular Markovian jump systems with mixed mode-dependent time-varying delay, IEEE Transactions on Circuits and Systems, 60, 9, 2440-2452 (2013) · Zbl 1468.94267 · doi:10.1109/TCSI.2013.2246253
[31] Loxton, R.; Teo, K. L.; Rehbock, V., An optimization approach to state-delay identification, IEEE Transactions on Automatic Control, 55, 9, 2113-2119 (2010) · Zbl 1368.93126 · doi:10.1109/TAC.2010.2050710
[32] Chai, Q.; Loxton, R.; Teo, K. L.; Yang, C., A unified parameter identification method for nonlinear time-delay systems, Journal of Industrial and Management Optimization, 9, 2, 471-486 (2013) · Zbl 1274.93064
[33] Wu, Z.; Su, H.; Chu, J., Delay-dependent \(H_\infty\) control for singular Markovian jump systems with time delay, Optimal Control Applications & Methods, 30, 5, 443-461 (2009) · doi:10.1002/oca.860
[34] Gu, K.; Kharitonov, V. L.; Chen, J., Stability of Time-Delay Systems (2003), Boston, Mass, USA: Birkhäuser, Boston, Mass, USA · Zbl 1039.34067 · doi:10.1007/978-1-4612-0039-0
[35] Lam, H. K.; Leung, F. H. F., Stabilization of chaotic systems using linear sampled-data controller, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 17, 6, 2021-2031 (2007) · Zbl 1142.93022 · doi:10.1142/S0218127407018191
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.