Du, Wei-Shih; Khojasteh, Farshid New results and generalizations for approximate fixed point property and their applications. (English) Zbl 1474.54151 Abstr. Appl. Anal. 2014, Article ID 581267, 9 p. (2014). Summary: We first introduce the concept of manageable functions and then prove some new existence theorems related to approximate fixed point property for manageable functions and \(\alpha\)-admissible multivalued maps. As applications of our results, some new fixed point theorems which generalize and improve Du’s fixed point theorem, Berinde-Berinde’s fixed point theorem, Mizoguchi-Takahashi’s fixed point theorem, and Nadler’s fixed point theorem and some well-known results in the literature are given. Cited in 1 ReviewCited in 9 Documents MSC: 54H25 Fixed-point and coincidence theorems (topological aspects) 47H10 Fixed-point theorems PDF BibTeX XML Cite \textit{W.-S. Du} and \textit{F. Khojasteh}, Abstr. Appl. Anal. 2014, Article ID 581267, 9 p. (2014; Zbl 1474.54151) Full Text: DOI References: [1] Banach, S., Sur les opérations dans les ensembles abstraits et leurs applications aux équations integrales, Fundamenta Mathematicae, 3, 133-181 (1922) · JFM 48.0201.01 [2] Nadler, S. B., Multi-valued contraction mappings, Pacific Journal of Mathematics, 30, 475-488 (1969) · Zbl 0187.45002 [3] Mizoguchi, N.; Takahashi, W., Fixed point theorems for multivalued mappings on complete metric spaces, Journal of Mathematical Analysis and Applications, 141, 1, 177-188 (1989) · Zbl 0688.54028 [4] Reich, S., Some problems and results in fixed point theory, Contemporary Mathematics, 21, 179-187 (1983) · Zbl 0531.47048 [5] Berinde, M.; Berinde, V., On a general class of multi-valued weakly Picard mappings, Journal of Mathematical Analysis and Applications, 326, 2, 772-782 (2007) · Zbl 1117.47039 [6] Du, W.-S., On coincidence point and fixed point theorems for nonlinear multivalued maps, Topology and its Applications, 159, 1, 49-56 (2012) · Zbl 1231.54021 [7] Takahashi, W., Nonlinear Functional Analysis (2000), Yokohama, Japan: Yokohama Publishers, Yokohama, Japan [8] Uderzo, A., Fixed points for directional multi-valued \(k(\cdot)\)-contractions, Journal of Global Optimization, 31, 3, 455-469 (2005) · Zbl 1081.47058 [9] Petruşel, A.; Sîntămărian, A., Single-valued and multi-valued Caristi type operators, Publicationes Mathematicae Debrecen, 60, 1-2, 167-177 (2002) · Zbl 1003.47041 [10] Feng, Y.; Liu, S., Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, Journal of Mathematical Analysis and Applications, 317, 1, 103-112 (2006) · Zbl 1094.47049 [11] Huang, L.-G.; Zhang, X., Cone metric spaces and fixed point theorems of contractive mappings, Journal of Mathematical Analysis and Applications, 332, 2, 1468-1476 (2007) · Zbl 1118.54022 [12] Du, W.-S., A note on cone metric fixed point theory and its equivalence, Nonlinear Analysis: Theory, Methods & Applications, 72, 5, 2259-2261 (2010) · Zbl 1205.54040 [13] Du, W.-S., Some new results and generalizations in metric fixed point theory, Nonlinear Analysis: Theory, Methods & Applications, 73, 5, 1439-1446 (2010) · Zbl 1190.54030 [14] Du, W.-S., Coupled fixed point theorems for nonlinear contractions satisfied Mizoguchi-Takahashi’s condition in quasiordered metric spaces, Fixed Point Theory and Applications, 2010 (2010) · Zbl 1194.54061 [15] Du, W.-S., Nonlinear contractive conditions for coupled cone fixed point theorems, Fixed Point Theory and Applications, 2010 (2010) · Zbl 1220.54022 [16] Du, W.-S., New cone fixed point theorems for nonlinear multivalued maps with their applications, Applied Mathematics Letters, 24, 2, 172-178 (2011) · Zbl 1218.54037 [17] Du, W.-S.; Zheng, S.-X., Nonlinear conditions for coincidence point and fixed point theorems, Taiwanese Journal of Mathematics, 16, 3, 857-868 (2012) · Zbl 1258.54014 [18] Du, W.-S., On Caristi type maps and generalized distances with applications, Abstract and Applied Analysis, 2013 (2013) · Zbl 1292.54022 [19] Du, W.-S.; Karapınar, E.; Shahzad, N., The study of fixed point theory for various multivalued non-self-maps, Abstract and Applied Analysis, 2013 (2013) · Zbl 1470.54054 [20] Lin, I. J.; Chen, T. H., New existence theorems of coincidence points approach to generalizations of Mizoguchi-Takahashi’s fixed point theorem, Fixed Point Theory and Applications, 2012 (2012) · Zbl 1469.54146 [21] Khojasteh, F.; Shukla, S.; Radenovic, S., A new approach to the study of fixed point theory for simulation function [22] Eldred, A. A.; Veeramani, P., Existence and convergence of best proximity points, Journal of Mathematical Analysis and Applications, 323, 2, 1001-1006 (2006) · Zbl 1105.54021 [23] Karapinar, E., Generalizations of Caristi Kirk’s theorem on partial metric spaces, Fixed Point Theory and Applications, 2011 (2011) · Zbl 1281.54027 [24] Jleli, M.; Karapinar, E.; Samet, B., On best proximity points under the \(P\)-property on partially ordered metric spaces, Abstract and Applied Analysis, 2013 (2013) · Zbl 1298.54031 [25] Karapınar, E., On best proximity point of \(\psi \)-Geraghty contractions, Fixed Point Theory and Applications, 2013 (2013) · Zbl 1295.41037 [26] Jleli, M.; Karapınar, E.; Samet, B., Best proximity points for generalized \(\alpha-\psi \)-proximal contractive type mappings, Journal of Applied Mathematics, 2013 (2013) · Zbl 1266.47077 [27] Du, W.-S.; Lakzian, H., Nonlinear conditions for the existence of best proximity points, Journal of Inequalities and Applications, 2012 (2012) · Zbl 1279.41018 [28] Du, W. S.; Karapinar, E., A note on Caristi-type cyclic maps: related results and applications, Fixed Point Theory and Applications, 2013 (2013) · Zbl 1334.54063 [29] Hussain, N.; Amini-Harandi, A.; Cho, Y. J., Approximate endpoints for set-valued contractions in metric spaces, Fixed Point Theory and Applications, 2010 (2010) · Zbl 1202.54033 [30] Khamsi, M. A., On asymptotically nonexpansive mappings in hyperconvex metric spaces, Proceedings of the American Mathematical Society, 132, 2, 365-373 (2004) · Zbl 1043.47040 [31] Du, W.-S., On approximate coincidence point properties and their applications to fixed point theory, Journal of Applied Mathematics, 2012 (2012) · Zbl 1318.54024 [32] Du, W.-S.; He, Z.; Chen, Y. L., New existence theorems for approximate coincidence point property and approximate fixed point property with applications to metric fixed point theory, Journal of Nonlinear and Convex Analysis, 13, 3, 459-474 (2012) · Zbl 1260.54058 [33] Du, W.-S., On generalized weakly directional contractions and approximate fixed point property with applications, Fixed Point Theory and Applications, 2012 (2012) · Zbl 1281.54022 [34] Du, W.-S., New existence results and generalizations for coincidence points and fixed points without global completeness, Abstract and Applied Analysis, 2013 (2013) · Zbl 1267.54042 [35] Samet, B.; Vetro, C.; Vetro, P., Fixed point theorems for \(\alpha-\psi \)-contractive type mappings, Nonlinear Analysis: Theory, Methods & Applications, 75, 4, 2154-2165 (2012) · Zbl 1242.54027 [36] Asl, J. H.; Rezapour, S.; Shahzad, N., On fixed points of \(\alpha-\psi \)-contractive multifunctions, Fixed Point Theory and Applications, 2012 (2012) · Zbl 1293.54017 [37] Mohammadi, B.; Rezapour, S.; Shahzad, N., Some results on fixed points of \(\alpha-\psi \)-Ciric generalized multifunctions, Fixed Point Theory and Applications, 2013 (2013) · Zbl 1423.54090 [38] Alikhani, H.; Rezapour, Sh.; Shahzad, N., Fixed points of a new type of contractive mappings and multifunctions, Filomat, 27, 7, 1319-1315 (2013) · Zbl 1340.54053 [39] Alikhani, H.; Rakocevic, V.; Rezapour, Sh.; Shahzad, N., Fixed points of proximinal valued \(\beta-\psi \)-contractive multifunctions · Zbl 1337.54034 [40] Xu, H. -K., Metric fixed point theory for multivalued mappings, Dissertationes Mathematicae, 389 (2000) · Zbl 0972.47041 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.