Zheng, Song Projective synchronization analysis of drive-response coupled dynamical network with multiple time-varying delays via impulsive control. (English) Zbl 1474.34532 Abstr. Appl. Anal. 2014, Article ID 581971, 10 p. (2014). Summary: The problem of projective synchronization of drive-response coupled dynamical network with delayed system nodes and multiple coupling time-varying delays is investigated. Some sufficient conditions are derived to ensure projective synchronization of drive-response coupled network under the impulsive controller by utilizing the stability analysis of the impulsive functional differential equation and comparison theory. Numerical simulations on coupled time delay Lorenz chaotic systems are exploited finally to illustrate the effectiveness of the obtained results. Cited in 1 Document MSC: 34K35 Control problems for functional-differential equations 34H10 Chaos control for problems involving ordinary differential equations 34K45 Functional-differential equations with impulses PDF BibTeX XML Cite \textit{S. Zheng}, Abstr. Appl. Anal. 2014, Article ID 581971, 10 p. (2014; Zbl 1474.34532) Full Text: DOI OpenURL References: [1] Huberman, B. A.; Adamic, L. A., Growth dynamics of the world-wide web, Nature, 401, 6749, 131-132, (1999) [2] Strogatz, S. H., Exploring complex networks, Nature, 410, 6825, 268-276, (2001) · Zbl 1370.90052 [3] Sun, W., Random walks on generalized Koch networks, Physica Scripta, 88, 4, (2013) · Zbl 1278.05228 [4] Lee, T. H.; Park, J. H.; Ji, D. H.; Kwon, O. M.; Lee, S. M., Guaranteed cost synchronization of a complex dynamical network via dynamic feedback control, Applied Mathematics and Computation, 218, 11, 6469-6481, (2012) · Zbl 1238.93070 [5] Sorrentino, F.; Ott, E., Adaptive synchronization of dynamics on evolving complex networks, Physical Review Letters, 100, 11, (2008) [6] Gorochowski, T. E.; Di Bernardo, M.; Grierson, C. S., Evolving enhanced topologies for the synchronization of dynamical complex networks, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 81, 5, (2010) [7] Sun, W.; Yang, Y.; Li, C.; Liu, Z., Synchronization inside complex dynamical networks with double time-delays and nonlinear inner-coupling functions, International Journal of Modern Physics B, 25, 11, 1531-1541, (2011) · Zbl 1334.93028 [8] Sun, W.; Zhang, J.; Li, C., Synchronization analysis of two coupled complex networks with time delays, Discrete Dynamics in Nature and Society, 2011, (2011) · Zbl 1259.34074 [9] Shen, B.; Wang, Z.; Liu, X., Sampled-data synchronization control of dynamical networks with stochastic sampling, IEEE Transactions on Automatic Control, 57, 2644-2650, (2012) · Zbl 1369.93047 [10] Dong, Y.; Xian, J.; Han, D., New conditions for synchronization in complex networks with multiple time-varying delays, Communications in Nonlinear Science and Numerical Simulation, 18, 9, 2581-2588, (2013) · Zbl 1304.34095 [11] Sun, W.; Li, S., Generalized outer synchronization between two uncertain dynamical networks, Nonlinear Dynamics, (2014) · Zbl 1314.34121 [12] De Lellis, P.; Di Bernardo, M.; Garofalo, F., Synchronization of complex networks through local adaptive coupling, Chaos, 18, 3, (2008) · Zbl 1309.34090 [13] DeLellis, P.; diBernardo, M.; Garofalo, F., Novel decentralized adaptive strategies for the synchronization of complex networks, Automatica, 45, 5, 1312-1318, (2009) · Zbl 1162.93361 [14] Asheghan, M. M.; Míguez, J.; Hamidi-Beheshti, M. T.; Tavazoei, M. S., Robust outer synchronization between two complex networks with fractional order dynamics, Chaos, 21, 3, (2011) · Zbl 1318.34003 [15] Wang, B.; Jiang, J.; Yu, H., Adaptive synchronization of fractional-order memristor-based Chua’s system, Science and Control Engineering, 2, 291-296, (2014) [16] Guan, Z.-H.; Hill, D. J.; Yao, J., A hybrid impulsive and switching control strategy for synchronization of nonlinear systems and application to Chua’s chaotic circuit, International Journal of Bifurcation and Chaos, 16, 1, 229-238, (2006) · Zbl 1097.94035 [17] Li, P.; Cao, J.; Wang, Z., Robust impulsive synchronization of coupled delayed neural networks with uncertainties, Physica A: Statistical Mechanics and its Applications, 373, 261-272, (2007) [18] Zhou, J.; Wu, Q.; Xiang, L., Impulsive pinning complex dynamical networks and applications to firing neuronal synchronization, Nonlinear Dynamics, 69, 1393-1403, (2012) · Zbl 1253.93105 [19] Zhang, Q.; Zhao, J., Projective and lag synchronization between general complex networks via impulsive control, Nonlinear Dynamics, 67, 4, 2519-2525, (2012) · Zbl 1243.93011 [20] Fang, Y.; Yan, K.; Li, K., Impulsive synchronization of a class of chaotic systems, Systems Science and Control Engineering, 2, 1, 55-60, (2014) [21] Chen, T.; Liu, X.; Lu, W., Pinning complex networks by a single controller, IEEE Transactions on Circuits and Systems I: Regular Papers, 54, 6, 1317-1326, (2007) · Zbl 1374.93297 [22] Zhou, J.; Lu, J.-A.; Lü, J., Pinning adaptive synchronization of a general complex dynamical network, Automatica, 44, 4, 996-1003, (2008) · Zbl 1283.93032 [23] Wang, S.; He, C.; Yao, H., Cluster anti-synchronization of complex networks with nonidentical dynamical nodes, Journal of Applied Mathematics, 2012, (2012) · Zbl 1251.93016 [24] Wang, S.; Yao, H.; Sun, M., Cluster synchronization of time-varying delays coupled complex networks with nonidentical dynamical nodes, Journal of Applied Mathematics, 2012, (2012) · Zbl 1244.93114 [25] Wang, S.; Yao, H., The effect of control strength on lag synchronization of nonlinear coupled complex networks, Abstract and Applied Analysis, 2012, (2012) · Zbl 1246.93082 [26] Hu, Q.; Peng, H.; Wang, Y.; Hu, Z.; Yang, Y., Pinning adaptive synchronization of complex dynamical network with multi-links, Nonlinear Dynamics, 69, 1813-1824, (2012) · Zbl 1263.93174 [27] Cai, S.; Liu, Z.; Xu, F.; Shen, J., Periodically intermittent controlling complex dynamical networks with time-varying delays to a desired orbit, Physics Letters A: General, Atomic and Solid State Physics, 373, 42, 3846-3854, (2009) · Zbl 1234.34035 [28] Mainieri, R.; Rehacek, J., Projective synchronization in three-dimensional chaotic systems, Physical Review Letters, 82, 15, 3042-3045, (1999) [29] Xu, D., Control of projective synchronization in chaotic systems, Physical Review E, 63, 27201-27204, (2001) [30] Vasegh, N.; Khellat, F., Projective synchronization of chaotic time-delayed systems via sliding mode controller, Chaos, Solitons and Fractals, 42, 2, 1054-1061, (2009) · Zbl 1198.93185 [31] Wang, Z.-L., Projective synchronization of hyperchaotic Lü system and Liu system, Nonlinear Dynamics, 59, 3, 455-462, (2010) · Zbl 1183.70055 [32] Cao, J.; Ho, D. W. C.; Yang, Y., Projective synchronization of a class of delayed chaotic systems via impulsive control, Physics Letters A: General, Atomic and Solid State Physics, 373, 35, 3128-3133, (2009) · Zbl 1233.34017 [33] Zheng, S.; Bi, Q.; Cai, G., Adaptive projective synchronization in complex networks with time-varying coupling delay, Physics Letters A: General, Atomic and Solid State Physics, 373, 17, 1553-1559, (2009) · Zbl 1228.05267 [34] Zheng, S., Analyzing projective synchronization on different scaling factors in a drive-response coupling dynamical network with time-varying delays, Nonlinear Dynamics, 70, 1, 709-719, (2012) · Zbl 1267.93081 [35] Hu, M.; Yang, Y.; Xu, Z.; Zhang, R.; Guo, L., Projective synchronization in drive-response dynamical networks, Physica A: Statistical Mechanics and its Applications, 381, 1-2, 457-466, (2007) [36] Hu, M.; Xu, Z.; Yang, Y., Projective cluster synchronization in drive-response dynamical networks, Physica A: Statistical Mechanics and its Applications, 387, 14, 3759-3768, (2008) [37] Zhao, Y.; Yang, Y., The impulsive control synchronization of the drive-response complex system, Physics Letters A: General, Atomic and Solid State Physics, 372, 48, 7165-7171, (2008) · Zbl 1227.34045 [38] Sun, M.; Zeng, C.; Tian, L., Projective synchronization in drive-response dynamical networks of partially linear systems with time-varying coupling delay, Physics Letters A: General, Atomic and Solid State Physics, 372, 46, 6904-6908, (2008) · Zbl 1227.34053 [39] Chen, J.; Jiao, L.; Wu, J.; Wang, X., Projective synchronization with different scale factors in a drivenresponse complex network and its application in image encryption, Nonlinear Analysis: Real World Applications, 11, 4, 3045-3058, (2010) · Zbl 1214.93014 [40] Zheng, S., Adaptive-impulsive projective synchronization of drive-response delayed complex dynamical networks with time-varying coupling, Nonlinear Dynamics, 67, 4, 2621-2630, (2012) · Zbl 1243.93042 [41] Yang, Z.; Xu, D., Stability analysis and design of impulsive control systems with time delay, IEEE Transactions on Automatic Control, 52, 8, 1448-1454, (2007) · Zbl 1366.93276 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.