Yakhno, V. G.; Ersoy, Ş. Computing the electric and magnetic matrix Green’s functions in a rectangular parallelepiped with a perfect conducting boundary. (English) Zbl 1474.78003 Abstr. Appl. Anal. 2014, Article ID 586370, 13 p. (2014). Summary: A method for the approximate computation of frequency-dependent magnetic and electric matrix Green’s functions in a rectangular parallelepiped with a perfect conducting boundary is suggested in the paper. This method is based on approximation (regularization) of the Dirac delta function and its derivatives, which appear in the differential equations for magnetic and electric Green’s functions, and the Fourier series expansion meta-approach for solving the elliptic boundary value problems. The elements of approximate Green’s functions are found explicitly in the form of the Fourier series with a finite number of terms. The convergence analysis for finding the number of the terms is given. The computational experiments have confirmed the robustness of the method. Cited in 1 Document MSC: 78A25 Electromagnetic theory (general) 35A08 Fundamental solutions to PDEs 35Q60 PDEs in connection with optics and electromagnetic theory 78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory × Cite Format Result Cite Review PDF Full Text: DOI OA License References: [1] Assous, F.; Michaeli, M., Solving Maxwell’s equations in singular domains with a Nitsche type method, Journal of Computational Physics, 230, 12, 4922-4939 (2011) · Zbl 1220.78009 · doi:10.1016/j.jcp.2011.03.013 [2] Buffa, A.; Perugia, I., Discontinuous Galerkin approximation of the Maxwell eigenproblem, SIAM Journal on Numerical Analysis, 44, 5, 2198-2226 (2006) · Zbl 1344.65110 · doi:10.1137/050636887 [3] Ciarlet, P., Augmented formulations for solving Maxwell equations, Computer Methods in Applied Mechanics and Engineering, 194, 2-5, 559-586 (2005) · Zbl 1063.78018 · doi:10.1016/j.cma.2004.05.021 [4] Denisenko, V. V., The energy method for constructing time-harmonic solutions of the Maxwell equations, Siberian Mathematical Journal, 52, 2, 265-282 (2011) · Zbl 1219.35300 · doi:10.1134/S0037446611020030 [5] Dolmans, G., Electromagnetic Fields inside a Large Room with Perfectly Conducting Walls. Electromagnetic Fields inside a Large Room with Perfectly Conducting Walls, EUT Report 95-E-286 (1995), Faculty of Electrical Engineering, Eindhoven University of Technology [6] Dautray, R.; Lions, J. L., Mathematical Analysis and Numerical Methods for Science and Technology, xii+485 (1993), Berlin, Germany: Springer, Berlin, Germany · Zbl 0956.35001 · doi:10.1007/978-3-642-58004-8 [7] Houston, P.; Perugia, I.; Schötzau, D., Mixed discontinuous Galerkin approximation of the Maxwell operator, SIAM Journal on Numerical Analysis, 42, 1, 434-459 (2004) · Zbl 1084.65115 · doi:10.1137/S003614290241790X [8] Taflove, A., Computational Electrodynamics: The Finite-Difference Time-Domain Method, xviii+599 (1995), Boston, Mass, USA: Artech House, Boston, Mass, USA · Zbl 0840.65126 [9] Burridge, R.; Qian, J., The fundamental solution of the time-dependent system of crystal optics, European Journal of Applied Mathematics, 17, 1, 63-94 (2006) · Zbl 1160.78001 · doi:10.1017/S0956792506006486 [10] Nevels, R.; Jeong, J., The time domain Green’s function and propagator for Maxwell’s equations, IEEE Transactions on Antennas and Propagation, 52, 11, 3012-3018 (2004) · Zbl 1368.78009 · doi:10.1109/TAP.2004.835123 [11] Nevels, R.; Jeong, J., Corrections to: ‘the time domain Green’s function and propagator for Maxwell’s equations’, IEEE Transactions on Antennas and Propagation, 56, 4, 1212-1213 (2008) · Zbl 1369.78057 · doi:10.1109/TAP.2008.919228 [12] Ortner, N.; Wagner, P., Fundamental matrices of homogeneous hyperbolic systems. Applications to crystal optics, elastodynamics, and piezoelectromagnetism, Zeitschrift für Angewandte Mathematik und Mechanik, 84, 5, 314-346 (2004) · Zbl 1066.46028 · doi:10.1002/zamm.200310130 [13] Rospsha, N.; Kastner, R., Closed form FDTD-compatible Green’s function based on combinatorics, Journal of Computational Physics, 226, 1, 798-817 (2007) · Zbl 1130.78018 · doi:10.1016/j.jcp.2007.05.017 [14] Tai, C. T., Dyadic Green Functions in Electromagnetic Theory (1971), New York, NY, USA: IEEE Press, New York, NY, USA [15] Wagner, P., The singular terms in the fundamental matrix of crystal optics, Proceedings of the Royal Society A, 467, 2133, 2663-2689 (2011) · Zbl 1228.35239 · doi:10.1098/rspa.2011.0058 [16] Yakhno, V. G., Deriving the time-dependent dyadic Green’s functions in conductive anisotropic media, International Journal of Engineering Science, 48, 3, 332-342 (2010) · Zbl 1213.78016 · doi:10.1016/j.ijengsci.2009.09.006 [17] Yakhno, V. G.; Çerdik Yaslan, H.; Yakhno, T. M., Computation of the fundamental solution of electrodynamics for anisotropic materials, Central European Journal of Mathematics, 10, 1, 188-203 (2012) · Zbl 1243.78051 · doi:10.2478/s11533-011-0122-z [18] Weinberger, H. F., A First Course in Partial Differential Equations with Complex Variables and Transform Methods, xii+446 (1995), New York, NY, USA: Dover Publications, New York, NY, USA [19] Vladimirov, V. S., Equations of Mathematical Physics, 3, vi+418 (1971), New York, NY, USA: Marcel Dekker, New York, NY, USA · Zbl 0231.35002 [20] Vladimirov, V. S., Methods of the Theory of Generalized Functions. Methods of the Theory of Generalized Functions, Analytical Methods and Special Functions, 6, xiv+311 (2002), New York, NY, USA: Taylor & Francis, New York, NY, USA · Zbl 1078.46029 [21] Schwartz, L., Mathematics for the Physical Sciences, 358 (1966), Paris, France: Addison-Wesley Publishing Company, Paris, France · Zbl 0151.34001 [22] Halperin, I., Introduction to the Theory of Distributions, vi+35 (1952), Toronto, Canada: University of Toronto Press, Toronto, Canada · Zbl 0046.12603 [23] Kanwal, R. P., Generalized Functions. Generalized Functions, Mathematics in Science and Engineering, 171, xiii+428 (1983), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0538.46022 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.