×

Oscillation theorems for second-order nonlinear neutral delay differential equations. (English) Zbl 1474.34447

Summary: We analyze the oscillatory behavior of solutions to a class of second-order nonlinear neutral delay differential equations. Our theorems improve a number of related results reported in the literature.

MSC:

34K11 Oscillation theory of functional-differential equations
34K40 Neutral functional-differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Hale, J. K., Theory of Functional Differential Equations (1977), New York, NY, USA: Springer, New York, NY, USA
[2] Agarwal, R. P.; Bohner, M.; Li, W. T., Nonoscillation and Oscillation: Theory for Functional Differential Equations (2004), New York, NY, USA: Marcel Dekker, New York, NY, USA
[3] Agarwal, R. P.; Grace, S. R.; O’Regan, D., Oscillation Theory for Difference and Functional Differential Equations (2000), Dordrecht, The Netherlands: Kluwer Academic Publishers, Dordrecht, The Netherlands · Zbl 0954.34002
[4] Erbe, L.; Kong, Q.; Zhang, B. G., Oscillation Theory for Functional Differential Equations (1995), New York, NY, USA: Marcel Dekker, New York, NY, USA
[5] Ladde, G. S.; Lakshmikantham, V.; Zhang, B. G., Oscillation Theory of Differential Equations with Deviating Arguments (1987), New York, NY, USA: Marcel Dekker, New York, NY, USA · Zbl 0622.34071
[6] Baculíková, B.; Džurina, J., Oscillation theorems for second order neutral differential equations, Computers & Mathematics with Applications, 61, 1, 94-99 (2011) · Zbl 1207.34081
[7] Baculíková, B.; Džurina, J., Oscillation theorems for second-order nonlinear neutral differential equations, Computers & Mathematics with Applications, 62, 12, 4472-4478 (2011) · Zbl 1236.34092
[8] Baculíková, B.; Džurina, J., Oscillation theorems for higher order neutral differential equations, Applied Mathematics and Computation, 219, 8, 3769-3778 (2012) · Zbl 1311.34163
[9] Baculíková, B.; Džurina, J.; Li, T., Oscillation results for even-order quasilinear neutral functional differential equations, Electronic Journal of Differential Equations, 2011, 1-9 (2011) · Zbl 1231.34114
[10] Grace, S. R.; Lalli, B. S., Oscillation of nonlinear second order neutral delay differential equations, Radovi Matematicki, 3, 77-84 (1987) · Zbl 0642.34059
[11] Hasanbulli, M.; Rogovchenko, Yu. V., Oscillation criteria for second order nonlinear neutral differential equations, Applied Mathematics and Computation, 215, 12, 4392-4399 (2010) · Zbl 1195.34098
[12] Li, T.; Agarwal, R. P.; Bohner, M., Some oscillation results for second-order neutral differential equations, The Journal of the Indian Mathematical Society, 79, 1-4, 97-106 (2012) · Zbl 1264.34134
[13] Li, T.; Agarwal, R. P.; Bohner, M., Some oscillation results for second-order neutral dynamic equations, Hacettepe Journal of Mathematics and Statistics, 41, 5, 715-721 (2012) · Zbl 1275.34113
[14] Li, T.; Han, Z.; Zhao, P.; Sun, S., Oscillation of even-order nonlinear neutral delay differential equations, Advances in Difference Equations, 2010, 1-9 (2010)
[15] Li, T.; Rogovchenko, Yu. V., Asymptotic behavior of higher-order quasilinear neutral differential equations, Abstract and Applied Analysis, 2014 (2014) · Zbl 1470.34219
[16] Li, T.; Rogovchenko, Yu. V.; Zhang, C., Oscillation of second-order neutral differential equations, Funkcialaj Ekvacioj, 56, 1, 111-120 (2013) · Zbl 1276.34057
[17] Sun, S.; Li, T.; Han, Z.; Li, H., Oscillation theorems for second-order quasilinear neutral functional differential equations, Abstract and Applied Analysis, 2012 (2012) · Zbl 1251.34083
[18] Ye, L.; Xu, Z., Oscillation criteria for second order quasilinear neutral delay differential equations, Applied Mathematics and Computation, 207, 2, 388-396 (2009) · Zbl 1168.34346
[19] Zhang, C.; Agarwal, R. P.; Bohner, M.; Li, T., New oscillation results for second-order neutral delay dynamic equations, Advances in Difference Equations, 2012, article 227 (2012) · Zbl 1377.34090
[20] Zhong, J.; Ouyang, Z.; Zou, S., An oscillation theorem for a class of second-order forced neutral delay differential equations with mixed nonlinearities, Applied Mathematics Letters, 24, 8, 1449-1454 (2011) · Zbl 1220.34088
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.