×

Travelling waves of an \(n\)-species food chain model with spatial diffusion and time delays. (English) Zbl 1468.35083

Summary: We investigate an \(n\)-species food chain model with spatial diffusion and time delays. By using Schauder’s fixed point theorem, we obtain the result about the existence of the travelling wave solutions of the food chain model with reaction term satisfying the partial quasimonotonicity conditions.

MSC:

35K40 Second-order parabolic systems
35C07 Traveling wave solutions
35Q92 PDEs in connection with biology, chemistry and other natural sciences
92D25 Population dynamics (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kuang, Y., Delay Differential Equations with Applications in Population Dynamics. Delay Differential Equations with Applications in Population Dynamics, Mathematics in Science and Engineering (1993), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0777.34002
[2] Xu, R.; Chaplain, M. A. J.; Davidson, F. A., Periodic solution for athree-species Lotka-Volterra food-chain model with time delays, Mathematical and Computer Modelling, 40, 7-8, 823-837 (2004) · Zbl 1067.92063 · doi:10.1016/j.mcm.2004.10.011
[3] Yan, X.-P.; Chu, Y.-D., Stability and bifurcation analysis for a delayed Lotka-Volterra predator-prey system, Journal of Computational and Applied Mathematics, 196, 1, 198-210 (2006) · Zbl 1095.92071 · doi:10.1016/j.cam.2005.09.001
[4] Pao, C. V., Global asymptotic stability of Lotka-Volterra 3-species reaction-diffusion systems with time delays, Journal of Mathematical Analysis and Applications, 281, 1, 186-204 (2003) · Zbl 1031.35071 · doi:10.1016/S0022-247X(03)00033-7
[5] Pao, C. V., Global asymptotic stability of Lotka-Volterra competition systems with diffusion and time delays, Nonlinear Analysis: Real World Applications, 5, 1, 91-104 (2004) · Zbl 1066.92054 · doi:10.1016/S1468-1218(03)00018-X
[6] Pao, C. V., The global attractor of a competitor-competitor-mutualist reaction-diffusion system with time delays, Nonlinear Analysis: Theory, Methods and Applications, 67, 9, 2623-2631 (2007) · Zbl 1121.35021 · doi:10.1016/j.na.2006.09.027
[7] Tang, Y.; Zhou, L., Stability switch and Hopf bifurcation for a diffusive prey-predator system with delay, Journal of Mathematical Analysis and Applications, 334, 2, 1290-1307 (2007) · Zbl 1156.35099 · doi:10.1016/j.jmaa.2007.01.041
[8] Schaaf, K. W., Asymptotic behavior and traveling wave solutions for parabolic functional-differential equations, Transactions of the American Mathematical Society, 302, 2, 587-615 (1987) · Zbl 0637.35082 · doi:10.2307/2000859
[9] Gardner, R. A., Existence and stability of travelling wave solutions of competition models: a degree theoretic approach, Journal of Differential Equations, 44, 3, 343-364 (1982) · Zbl 0446.35012 · doi:10.1016/0022-0396(82)90001-8
[10] Wu, J., Theory and Applications of Partial Functional-Differential Equations (1990), New York, NY, USA: Springer, New York, NY, USA · doi:10.1007/978-1-4612-4050-1
[11] Dunbar, S. R., Travelling wave solutions of diffuse Lotka-Volterra equations, Journal of Mathematical Biology, 17, 1, 11-32 (1983) · Zbl 0509.92024 · doi:10.1007/BF00276112
[12] Bates, P.; Chen, F., Periodic traveling waves for a nonlocal integro-differential model, Electronic Journal of Differential Equations, 1999, 1-19 (1999) · Zbl 0924.35060
[13] Ma, S.; Duan, Y., Asymptotic stability of traveling waves in a discrete convolution model for phase transitions, Journal of Mathematical Analysis and Applications, 308, 1, 240-256 (2005) · Zbl 1095.34047 · doi:10.1016/j.jmaa.2005.01.011
[14] Murray, J. D., Mathematical Biology (1989), Berlin, Germany: Springer, Berlin, Germany · Zbl 0682.92001
[15] Li, J.; Liu, Z., Smooth and non-smooth traveling waves in a nonlinearly dispersive equation, Applied Mathematical Modelling, 25, 1, 41-56 (2000) · Zbl 0985.37072 · doi:10.1016/S0307-904X(00)00031-7
[16] Wang, K.; Wang, W., Propagation of HBV with spatial dependence, Mathematical Biosciences, 210, 1, 78-95 (2007) · Zbl 1129.92052 · doi:10.1016/j.mbs.2007.05.004
[17] Wu, J.; Zou, X., Traveling wave fronts of reaction-diffusion systems with delay, Journal of Dynamics and Differential Equations, 13, 3, 651-687 (2001) · Zbl 0996.34053 · doi:10.1023/A:1016690424892
[18] Zou, X.; Wu, J., Local existence and stability of periodic traveling waves of lattice functional-differential equations, The Canadian Applied Mathematics Quarterly, 6, 4, 397-418 (1998) · Zbl 0919.34062
[19] Huang, J.; Zou, X., Traveling wavefronts in diffusive and cooperative Lotka-Volterra system with delays, Journal of Mathematical Analysis and Applications, 271, 2, 455-466 (2002) · Zbl 1017.35116 · doi:10.1016/S0022-247X(02)00135-X
[20] Ma, S., Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, Journal of Differential Equations, 171, 2, 294-314 (2001) · Zbl 0988.34053 · doi:10.1006/jdeq.2000.3846
[21] Gan, Q.; Xu, R.; Zhang, X.; Yang, P., Travelling waves of a three-species Lotka-Volterra food-chain model with spatial diffusion and time delays, Nonlinear Analysis: Real World Applications, 11, 4, 2817-2832 (2010) · Zbl 1197.35074 · doi:10.1016/j.nonrwa.2009.10.006
[22] Zeidler, E., Nonlinear Functional Analysis and its Applications: I. Fixed-Point Theorems (1986), New York, NY, USA: Springer, New York, NY, USA · Zbl 0583.47050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.