×

\(n\)-tupled coincidence point theorems in partially ordered metric spaces for compatible mappings. (English) Zbl 1471.54026

Summary: The intent of this paper is to introduce the notion of compatible mappings for \(n\)-tupled coincidence points due to M. Imdad et al. [J. Oper. 2013, Article ID 532867, 8 p. (2013; Zbl 1300.54069)]. Related examples are also given to support our main results. Our results are the generalizations of the results of (Gnana Bhaskar and Lakshmikantham (2006), Lakshmikantham and Ćirić (2009), Choudhury and Kundu (2010), and Choudhary et al. (2013)).

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
47H10 Fixed-point theorems

Citations:

Zbl 1300.54069
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alotaibi, A.; Alsulami, S. M., Coupled coincidence points for monotone operators in partially ordered metric spaces, Fixed Point Theory and Applications, 2011, article 44, 13 (2011) · Zbl 1315.47042
[2] Ran, A. C. M.; Reurings, M. C. B., A fixed point theorem in partially ordered sets and some applications to matrix equations, Proceedings of the American Mathematical Society, 132, 5, 1435-1443 (2004) · Zbl 1060.47056 · doi:10.1090/S0002-9939-03-07220-4
[3] Choudhury, B. S.; Kundu, A., A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Analysis: Theory, Methods & Applications, 73, 8, 2524-2531 (2010) · Zbl 1229.54051 · doi:10.1016/j.na.2010.06.025
[4] Choudhury, B. S.; Das, K.; Das, P., Coupled coincidence point results for compatible mappings in partially ordered fuzzy metric spaces, Fuzzy Sets and Systems, 222, 1, 84-97 (2013) · Zbl 1284.54015 · doi:10.1016/j.fss.2012.07.012
[5] Karapınar, E.; Van Luong, N.; Thuan, N. X., Coupled coincidence points for mixed monotone operators in partially ordered metric spaces, Arabian Journal of Mathematics, 1, 3, 329-339 (2012) · Zbl 1253.54044 · doi:10.1007/s40065-012-0027-0
[6] Karapınar, E.; Erhan, M., Fixed point theorems for operators on partial metric spaces, Applied Mathematics Letters, 24, 11, 1894-1899 (2011) · Zbl 1229.54056 · doi:10.1016/j.aml.2011.05.013
[7] Aydi, H., Some coupled fixed point results on partial metric spaces, International Journal of Mathematics and Mathematical Sciences, 2011 (2011) · Zbl 1213.54060 · doi:10.1155/2011/647091
[8] Nieto, J. J.; Rodríguez-López, R., Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22, 3, 223-239 (2005) · Zbl 1095.47013 · doi:10.1007/s11083-005-9018-5
[9] Agarwal, R. P.; El-Gebeily, M. A.; O’Regan, D., Generalized contractions in partially ordered metric spaces, Applicable Analysis, 87, 1, 109-116 (2008) · Zbl 1140.47042 · doi:10.1080/00036810701556151
[10] Lakshmikantham, V.; Ćirić, L. B., Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis: Theory, Methods & Applications, 70, 12, 4341-4349 (2009) · Zbl 1176.54032 · doi:10.1016/j.na.2008.09.020
[11] Nguyen, V.; Nguyen, X., Coupled fixed point theorems in partially ordered metric spaces, Bulletin of Mathematical Analysis and Applications, 2, 4, 16-24 (2010) · Zbl 1312.47069
[12] Gnana Bhaskar, T.; Lakshmikantham, V., Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis: Theory, Methods & Applications, 65, 7, 1379-1393 (2006) · Zbl 1106.47047 · doi:10.1016/j.na.2005.10.017
[13] Gugani, M.; Agarwal, M.; Chugh, R., Common fixed point results in \(G\)-metric spaces and applications, International Journal of Computer Applications, 43, 11, 38-42 (2012)
[14] Chauhan, S.; Pant, B. D., Common fixed point theorems in fuzzy metric spaces, Bulletin of the Allahabad Mathematical Society, 27, 1, 27-43 (2012) · Zbl 1263.54048
[15] Sumitra; Alshaikh, F. A., Coupled fixed point theorems for a pair of weakly compatible maps along with (CLRg) property in fuzzy metric spaces, International Journal of Applied Physics and Mathematics, 2, 5, 345-347 (2012)
[16] Alamgir Khan, M.; Sumitra, CLRg property for coupled fixed point theorems in fuzzy metric spaces, International Journal of Applied Physics and Mathematics, 2, 5, 355-358 (2012) · Zbl 1291.54047
[17] Sumitra, Coupled fixed point theorem for compatible maps and its variants in fuzzy metric spaces, Jorden Journal of Mathematics and Statics, 6, 2, 141-155 (2013) · Zbl 1277.54014
[18] Shatanawi, W., Coupled fixed point theorems in generalized metric spaces, Hacettepe Journal of Mathematics and Statistics, 40, 3, 441-447 (2011) · Zbl 1230.54047
[19] Jungck, G., Commuting mappings and fixed points, The American Mathematical Monthly, 83, 4, 261-263 (1976) · Zbl 0321.54025
[20] Jungck, G., Compatible mappings and common fixed points, International Journal of Mathematics and Mathematical Sciences, 9, 4, 771-779 (1986) · Zbl 0613.54029 · doi:10.1155/S0161171286000935
[21] Imdad, M.; Soliman, A. H.; Choudhary, B. S.; Das, P., On \(n\)-tupled coincidence point results in metric spaces, Journal of Operators, 2013 (2013) · Zbl 1300.54069 · doi:10.1155/2013/532867
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.