×

Necessary and sufficient conditions of oscillation in first order neutral delay differential equations. (English) Zbl 1474.34442

Summary: We are concerned with oscillation of the first order neutral delay differential equation \([x(t) - p x(t - \tau)]' + q x(t - \sigma) = 0\) with constant coefficients, and we obtain some necessary and sufficient conditions of oscillation for all the solutions in respective cases \(0 < p < 1\) and \(p > 1\).

MSC:

34K11 Oscillation theory of functional-differential equations
34K06 Linear functional-differential equations
34K40 Neutral functional-differential equations

References:

[1] Györi, I.; Ladas, G., Oscillation Theory of Delay Differential Equations with Applications. Oscillation Theory of Delay Differential Equations with Applications, Oxford Mathematical Monographs (1991), Oxford, UK: Clarendon Press, Oxford, UK · Zbl 0780.34048
[2] Tanaka, S., Oscillation of solutions of first-order neutral differential equations, Hiroshima Mathematical Journal, 32, 1, 79-85 (2002) · Zbl 1022.34064
[3] Elabbasy, E. M.; Hassan, T. S.; Saker, S. H., Necessary and sufficient condition for oscillations of neutral differential equation, Serdica Mathematical Journal, 31, 4, 279-290 (2005) · Zbl 1164.34502
[4] Kubiaczyk, I.; Saker, S. H.; Morchalo, J., New oscillation criteria for first order nonlinear neutral delay differential equations, Applied Mathematics and Computation, 142, 2-3, 225-242 (2003) · Zbl 1031.34065 · doi:10.1016/S0096-3003(02)00298-9
[5] Li, W.-T.; Saker, S. H., Oscillation of nonlinear neutral delay differential equations with applications, Annales Polonici Mathematici, 77, 1, 39-51 (2001) · Zbl 0992.34045 · doi:10.4064/ap77-1-4
[6] Qin, G.; Huang, C.; Xie, Y.; Wen, F., Asymptotic behavior for third-order quasilinear differential equations, Advances in Difference Equations, 2013, article 305 (2013) · Zbl 1391.34113 · doi:10.1186/1687-1847-2013-305
[7] Dimitrova, M. B.; Donev, V. I., Sufficient conditions for oscillation of solutions of first order neutral delay impulsive differential equations with constant coefficients, Nonlinear Oscillations, 13, 1, 17-34 (2010) · Zbl 1334.34175 · doi:10.1007/s11072-010-0098-9
[8] Gao, J. F., Oscillations analysis of numerical solutions for neutral delay differential equations, International Journal of Computer Mathematics, 88, 12, 2648-2665 (2011) · Zbl 1230.34066 · doi:10.1080/00207160.2011.554541
[9] Guo, S.; Shen, Y., Necessary and sufficient conditions for oscillation of first order neutral difference equations, Acta Mathematicae Applicatae Sinica, 36, 5, 840-850 (2013) · Zbl 1299.39005
[10] Naito, T.; Hara, T.; Hino, Y.; Miyazaki, R.; Ma, W.; Lu, Z., Differential equations with time lag, Introduction To Functional Differential Equations (2013), Beijing, China: Sciences Press, Beijing, China
[11] Liu, G.; Yan, J., Global asymptotic stability of nonlinear neutral differential equation, Communications in Nonlinear Science and Numerical Simulation, 19, 4, 1035-1041 (2014) · Zbl 1457.34110
[12] Huang, C.; Yang, Z.; Yi, T.; Zou, X., On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities, Journal of Differential Equations, 256, 7, 2101-2114 (2014) · Zbl 1297.34084 · doi:10.1016/j.jde.2013.12.015
[13] Zhang, Q.; Wei, X.; Xu, J., Stability analysis for cellular neural networks with variable delays, Chaos, Solitons & Fractals, 28, 2, 331-336 (2006) · Zbl 1084.34068 · doi:10.1016/j.chaos.2005.05.026
[14] He, G.; Cao, J., Discussion of periodic solutions for \(p\) th order delayed NDEs, Applied Mathematics and Computation, 129, 2-3, 391-405 (2002) · Zbl 1035.34077 · doi:10.1016/S0096-3003(01)00048-0
[15] Huang, C.; Kuang, H.; Chen, X.; Wen, F., An LMI approach for dynamics of switched cellular neural networks with mixed delays, Abstract and Applied Analysis, 2013 (2013) · Zbl 1283.34069 · doi:10.1155/2013/870486
[16] Hale, J., Theory of Functional Differential Equations (1977), New York, NY, USA: Springer, New York, NY, USA · Zbl 0352.34001
[17] Kolmanvskii, V. B.; Nosov, V. R., Stability of Functional Differential Equations (1986), New York, NY, USA: Academic Process, New York, NY, USA · Zbl 0593.34070
[18] Zhang, B. G., Oscillation of first order neutral functional-differential equations, Journal of Mathematical Analysis and Applications, 139, 2, 311-318 (1989) · Zbl 0683.34037 · doi:10.1016/0022-247X(89)90110-8
[19] Ladas, G.; Sficas, Y. G., Oscillations of neutral delay differential equations, Canadian Mathematical Bulletin, 29, 4, 438-445 (1986) · Zbl 0566.34054 · doi:10.4153/CMB-1986-069-2
[20] Gopalsamy, K.; Zhang, B. G., Oscillation and nonoscillation in first order neutral differential equations, Journal of Mathematical Analysis and Applications, 151, 1, 42-57 (1990) · Zbl 0725.34088 · doi:10.1016/0022-247X(90)90242-8
[21] Zhou, Y.; Yu, Y. H., Oscillation for first order neutral delay differential equations, Journal of Mathematical Research and Exposition, 21, 1, 86-88 (2001) · Zbl 0989.34055
[22] Xiao, G.; Li, X., A new oscillatory criterion for first order neutral delay differential equations, Journal of Nanhua University (Science & Engineering Edition), 15, 4, 8-9 (2001)
[23] Lin, S., Oscillation in first order neutral differential equations, Annals of Differential Equations, 19, 3, 334-336 (2003) · Zbl 1050.34096
[24] Ladas, G.; Schults, S. W., On oscillations of neutral equations with mixed arguments, Hiroshima Mathematical Journal, 19, 2, 409-429 (1989) · Zbl 0697.34060
[25] Zhang, Y.; Wang, Y., Oscillatory criteria for a class of first order neutral delay differential equations, Journal of Shanxi University (Natural Science Edition), 29, 4, 341-342 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.