×

A note on Gronwall’s inequality on time scales. (English) Zbl 1474.26118

Summary: This paper gives a new version of Gronwall’s inequality on time scales. The method used in the proof is much different from that in the literature. Finally, an application is presented to show the feasibility of the obtained Gronwall’s inequality.

MSC:

26D15 Inequalities for sums, series and integrals
26E70 Real analysis on time scales or measure chains
34N05 Dynamic equations on time scales or measure chains
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bohner, M.; Guseinov, G.; Peterson, A., Introduction to the Time Scales Calculus, Advances in Dynamic Equations on Time Scales (2003), Boston, Mass, USA: Birkhäauser, Boston, Mass, USA · Zbl 1025.34001 · doi:10.1007/978-0-8176-8230-9
[2] Bohner, M.; Peterson, A., Dynamic Equations on Time Scales, An Introduction with Applications (2001), Boston, Mass, USA: Birkhäuser, Boston, Mass, USA · Zbl 0978.39001
[3] Agarwal, R. P.; Bohner, M.; O’Regan, D., Dynamic equations on time scales: a survey, Journal of Computational and Applied Mathematics, 141, 1-2, 1-26 (2002) · Zbl 1020.39008 · doi:10.1016/S0377-0427(01)00432-0
[4] Agarwal, R. P.; Bohner, M.; O’Regan, D., Time scale boundary value problems on infinite intervals, Journal of Computational and Applied Mathematics, 141, 1-2, 27-34 (2002) · Zbl 1001.39026 · doi:10.1016/S0377-0427(01)00433-2
[5] Erbe, L.; Peterson, A.; Řeháka, P., Comparison theorems for linear dynamic equations on time scales, Journal of Mathematical Analysis and Applications, 275, 1, 418-438 (2002) · Zbl 1034.34042 · doi:10.1016/S0022-247X(02)00390-6
[6] Erbe, L.; Peterson, A., Green functions and comparison theorems for di ff erential equations on measure chains, Dynamics of Continuous, Discrete and Impulsive Systems, 6, 1, 121-137 (1999) · Zbl 0938.34027
[7] Li, W. N., Some integral inequalities useful in the theory of certain partial dynamic equations on time scales, Computers and Mathematics with Applications, 61, 7, 1754-1759 (2011) · Zbl 1219.26019 · doi:10.1016/j.camwa.2011.02.002
[8] Li, W. N., Some delay integral inequalities on time scales, Computers & Mathematics with Applications, 59, 6, 1929-1936 (2010) · Zbl 1189.26046 · doi:10.1016/j.camwa.2009.11.006
[9] Xia, Y. H.; Cao, J.; Han, M., A new analytical method for the linearization of dynamic equation on measure chains, Journal of Differential Equations, 235, 2, 527-543 (2007) · Zbl 1126.34030 · doi:10.1016/j.jde.2007.01.004
[10] Xia, Y.; Chen, X.; Romanovski, V. G., On the linearization theorem of Fenner and Pinto, Journal of Mathematical Analysis and Applications, 400, 2, 439-451 (2013) · Zbl 1272.34048 · doi:10.1016/j.jmaa.2012.11.034
[11] Xia, Y.-H.; Li, J.; Wong, P. J. Y., On the topological classification of dynamic equations on time scales, Nonlinear Analysis: Real World Applications, 14, 6, 2231-2248 (2013) · Zbl 1303.37007 · doi:10.1016/j.nonrwa.2013.05.001
[12] Xia, Y., Global analysis of an impulsive delayed Lotka-Volterra competition system, Communications in Nonlinear Science and Numerical Simulation, 16, 3, 1597-1616 (2011) · Zbl 1221.34206 · doi:10.1016/j.cnsns.2010.07.014
[13] Xia, Y. H., Global asymptotic stability of an almost periodic nonlinear ecological model, Communications in Nonlinear Science and Numerical Simulation, 16, 11, 4451-4478 (2011) · Zbl 1219.92069 · doi:10.1016/j.cnsns.2011.03.041
[14] Xia, Y.; Han, M., New conditions on the existence and stability of periodic solution in Lotka-Volterra’s population system, SIAM Journal on Applied Mathematics, 69, 6, 1580-1597 (2009) · Zbl 1181.92084 · doi:10.1137/070702485
[15] Gao, Y.; Yuan, X.; Xia, Y.; Wong, P. J. Y., Linearization of impulsive differential equations with ordinary dichotomy, Abstract and Applied Analysis, 2014 (2014) · Zbl 1474.34259 · doi:10.1155/2014/632109
[16] Gao, Y.; Xia, Y.; Yuan, X.; Wong, P., Linearization of nonautonomous impulsive system with nonuniform exponential dichotomy, Abstract and Applied Analysis, 2014 (2014) · Zbl 1474.34373 · doi:10.1155/2014/860378
[17] Xia, Y.; Yuan, X.; Kou, K. I.; Wong, P. J. Y., Existence and uniqueness of solution for perturbed nonautonomous systems with nonuniform exponential dichotomy, Abstract and Applied Analysis, 2014 (2014) · Zbl 1468.34083 · doi:10.1155/2014/725098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.