×

Analysis of a chaotic memristor based oscillator. (English) Zbl 1474.94103

Summary: A chaotic oscillator based on the memristor is analyzed from a chaos theory viewpoint. Sensitivity to initial conditions is studied by considering a nonlinear model of the system, and also a new chaos analysis methodology based on the energy distribution is presented using the Discrete Wavelet Transform (DWT). Then, using Advance Design System (ADS) software, implementation of chaotic oscillator based on the memristor is considered. Simulation results are provided to show the main points of the paper.

MSC:

94C05 Analytic circuit theory
37N35 Dynamical systems in control
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior

References:

[1] Bianca, C.; Rondoni, L., The nonequilibrium ehrenfest gas: a chaotic model with flat obstacles?, Chaos, 19, 1 (2009) · Zbl 1311.76118 · doi:10.1063/1.3085954
[2] Bianca, C., Weyl-flow and the conformally symplectic structure of thermostatted billiards: the problem of the hyperbolicity, Nonlinear Analysis: Hybrid Systems, 5, 1, 32-51 (2011) · Zbl 1371.37068 · doi:10.1016/j.nahs.2010.08.004
[3] Djurović, I.; Rubežić, V., Multiple STFT-based approach for chaos detection in oscillatory circuits, Signal Processing, 87, 7, 1772-1780 (2007) · Zbl 1186.94108 · doi:10.1016/j.sigpro.2007.01.028
[4] Chua, L., Memristor—the missing circuit element, IEEE Transactions on Circuit Theory, 18, 5, 507-519 (1971) · doi:10.1109/TCT.1971.1083337
[5] Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S., The missing memristor found, Nature, 453, 7191, 80-83 (2008) · doi:10.1038/nature06932
[6] Tour, J. M.; He, T., Electronics: the fourth element, Nature, 453, 7191, 42-43 (2008) · doi:10.1038/453042a
[7] Marks, P., Missing memristor makes an appearance, New Scientist, 198, 2654, 26 (2008) · doi:10.1016/S0262-4079(08)61099-4
[8] Bao, B. C.; Liu, Z.; Xu, J. P., Steady periodic memristor oscillator with transient chaotic behaviours, Electronics Letters, 46, 3, 228-230 (2010) · doi:10.1049/el.2010.3114
[9] Muthuswamy, B.; Kokate, P., Memristor-based chaotic circuits, IETE Technical Review, 26, 6, 417-429 (2009) · doi:10.4103/0256-4602.57827
[10] Itoh, M.; Chua, L. O., Memristor oscillators, International Journal of Bifurcation and Chaos, 18, 11, 3183-3206 (2008) · Zbl 1165.94300 · doi:10.1142/S0218127408022354
[11] Muthuswamy, B., Implementing memristor based chaotic circuits, International Journal of Bifurcation and Chaos, 20, 5, 1335-1350 (2010) · Zbl 1193.94082 · doi:10.1142/S0218127410026514
[12] Muthuswamy, B.; Chua, L. O., Simplest chaotic circuit, International Journal of Bifurcation and Chaos, 20, 5, 1567-1580 (2010) · doi:10.1142/S0218127410027076
[13] Zhong, G. Q., Implementation of Chua’s circuit with a cubic nonlinearity, IEEE Transactions on Circuits and Systems I, 41, 12, 934-941 (1994) · doi:10.1109/81.340866
[14] Thamilmaran, K.; Lakshmanan, M.; Venkatesan, A., Hyperchaos in a modified canonical Chua’s circuit, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 14, 1, 221-243 (2004) · Zbl 1067.94597 · doi:10.1142/S0218127404009119
[15] Wang, H.; Wang, X.; Li, C.; Chen, L., SPICE mutator model for transforming memristor into meminductor, Abstract and Applied Analysis, 2013, 1-5 (2013) · Zbl 1322.94132 · doi:10.1155/2013/281675
[16] Hu, Z.; Li, Y.; Yu, J., Chaotic oscillator based on voltage-controlled memcapacitor, Proceedings of the IEEE International Conference on Communications, Circuits and Systems · doi:10.1109/ICCCAS.2010.5581863
[17] Zhu, Q.; Liang, S., A Method for detecting chaotic vibration based on continuous wavelet transform, International Journa Sensing, Computing and Control, 1, 2, 125-132 (2011)
[18] Boashash, B., Time frequency signal analysis: past, present and future trends, Control and Dynamic Systems, 78, 1-69 (1996) · Zbl 0857.94003 · doi:10.1016/S0090-5267(96)80049-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.