×

Comparison analysis based on the cubic spline wavelet and Daubechies wavelet of harmonic balance method. (English) Zbl 1474.65524

Summary: This paper develops a theoretical analysis of harmonic balance method, based on the cubic spline wavelet and Daubechies wavelet, for steady state analysis of nonlinear circuits under periodic excitation. The properties of the resulting Jacobian matrix for harmonic balance are analyzed. Numerical experiments illustrate the theoretical analysis.

MSC:

65T60 Numerical methods for wavelets
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Long, D.; Melville, R.; Ashby, K.; Horton, B., Full-chip harmonic balance, Proceedings of the IEEE Custom Integrated Circuits Conference
[2] Nakhla, M. S.; Vlach, J., A piecewise harmonic balance technique for determination of periodic response of nonlinear systems, IEEE Transactions on Circuits and Systems, 23, 2, 85-91 (1976) · doi:10.1109/TCS.1976.1084181
[3] Rizzoli, V.; Mastri, F.; Sgallari, F.; Spaletta, G., Harmonic-balance simulation of strongly nonlinear very large-size microwave circuits by inexact Newton methods, Proceedings of the IEEE MTT-S International Microwave Symposium Digest
[4] Soveiko, N.; Nakhla, M. S., Steady-state analysis of multitone nonlinear circuits in wavelet domain, IEEE Transactions on Microwave Theory and Techniques, 52, 3, 785-797 (2004) · doi:10.1109/TMTT.2004.823539
[5] Steer, M.; Christoffersen, C., Generalized circuit formulation for the transient simulation of circuits using wavelet convolution and time marching techniques, Proceedings of the 15th European Conference on Circuit Theory and Design (ECCTD ’01)
[6] Cai, W.; Wang, J., Adaptive multiresolution collocation methods for initial boundary value problems of nonlinear PDEs, SIAM Journal on Numerical Analysis, 33, 3, 937-970 (1996) · Zbl 0856.65115 · doi:10.1137/0733047
[7] Wang, J., Cubic spline wavelet bases of sobolev spaces and multilevel interpolation, Applied and Computational Harmonic Analysis, 3, 2, 154-163 (1996) · Zbl 0855.41006 · doi:10.1006/acha.1996.0013
[8] Vlach, J.; Singhal, K., Computer Methods for Circuit Analysis and Design (1983), New York, NY, USA: Van Nostrand Reinhold, New York, NY, USA
[9] Daubechies, I., Ten Lectures on Wavelet (1992), Philadelphia, Pa, USA: SIAM, Philadelphia, Pa, USA · Zbl 0776.42018
[10] Beylkin, G., On the representation of operators in bases of compactly supported wavelets, SIAM Journal on Numerical Analysis, 29, 6, 1716-1740 (1992) · Zbl 0766.65007 · doi:10.1137/0729097
[11] Zhou, D.; Cai, W., A fast wavelet collocation method for high-speed circuit simulation, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 46, 8, 920-930 (1999) · Zbl 0963.94055 · doi:10.1109/81.780373
[12] Guan, N.; Yashiro, K.; Ohkawa, S., On a choice of wavelet bases in the wavelet transform approach, IEEE Transactions on Antennas and Propagation, 48, 8, 1186-1191 (2000) · Zbl 1368.94020 · doi:10.1109/8.884485
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.