Nonparametric regression with subfractional Brownian motion via Malliavin calculus. (English) Zbl 1474.62119

Summary: We study the asymptotic behavior of the sequence \(S_n = \sum_{i = 0}^{n - 1} K(n^\alpha S_i^{H_1})(S_{i + 1}^{H_2} - S_i^{H_2})\), as \(n\) tends to infinity, where \(S^{H_1}\) and \(S^{H_2}\) are two independent subfractional Brownian motions with indices \(H_1\) and \(H_2\), respectively. \(K\) is a kernel function and the bandwidth parameter \(\alpha\) satisfies some hypotheses in terms of \(H_1\) and \(H_2\). Its limiting distribution is a mixed normal law involving the local time of the sub-fractional Brownian motion \(S^{H_1}\). We mainly use the techniques of Malliavin calculus with respect to sub-fractional Brownian motion.


62G08 Nonparametric regression and quantile regression
60H07 Stochastic calculus of variations and the Malliavin calculus
60G22 Fractional processes, including fractional Brownian motion
Full Text: DOI


[1] Hansen, L. P., Large sample properties of generalized method of moments estimators, Econometrica, 50, 1029-1054 (1982) · Zbl 0502.62098 · doi:10.2307/1912775
[2] Andrewa, D. W. K.; McDermott, C. J., Nonlinear econometric models with deterministically trending variables, Reiew of Economic Studies, 62, 343-360 (1995) · Zbl 0836.62106
[3] Wooldridge, J. M., Chapter 45 Estimation and inference for dependent processes, Handbook of Econometrics, 4, 2639-2738 (1994) · doi:10.1016/S1573-4412(05)80014-5
[4] Granger, C. W. J., Nonlinear relationships between extended-memory variables, Econometrica, 63, 2, 265-280 (1995) · Zbl 0826.90022 · doi:10.2307/2951626
[5] Karlsen, H. A.; Myklebust, T.; Tjøstheim, D., Nonparametric estimation in a nonlinear cointegration type model, Annals of Statistics, 35, 1, 252-299 (2007) · Zbl 1114.62089 · doi:10.1214/009053606000001181
[6] Wang, Q.; Phillips, P. C. B., Asymptotic theory for local time density estimation and nonparametric cointegrating regression, Econometric Theory, 25, 3, 710-738 (2009) · Zbl 1253.62023 · doi:10.1017/S0266466608090269
[7] Bourguin, S.; Tudor, C. A., Asymptotic theory for fractional regression models via malliavin calculus, Journal of Theoretical Probability, 25, 2, 536-564 (2012) · Zbl 1256.60018 · doi:10.1007/s10959-010-0302-y
[8] Yan, L.; Shen, G., On the collision local time of sub-fractional Brownian motions, Statistics and Probability Letters, 80, 5-6, 296-308 (2010) · Zbl 1185.60040 · doi:10.1016/j.spl.2009.11.003
[9] Yan, L.; Shen, G.; He, K., Itô’s formula for a sub-fractional Brownian motion, Communications on Stochastic Analysis, 5, 1, 135-159 (2011) · Zbl 1331.60068
[10] Bojdecki, T.; Gorostiza, L. G.; Talarczyk, A., Fractional Brownian density process and its self-intersection local time of order k, Journal of Theoretical Probability, 17, 3, 717-739 (2004) · Zbl 1074.60047 · doi:10.1023/B:JOTP.0000040296.95910.e1
[11] Bojdecki, T.; Gorostiza, L. G.; Talarczyk, A., Limit theorems for occupation time fluctuations of branching systems I: long-range dependence, Stochastic Processes and their Applications, 116, 1, 1-18 (2006) · Zbl 1082.60024 · doi:10.1016/j.spa.2005.07.002
[12] Bojdecki, T.; Gorostiza, L. G.; Talarczyk, A., Some extensions of fractional brownian motion and sub-fractional browian motion related to particle systems, Electronic Communications in Probability, 12, 161-172 (2007) · Zbl 1128.60025
[13] Liu, J.; Yan, L., Remarks on asymptotic behavior of weighted quadratic variation of subfractional Brownian motion, Journal of the Korean Statistical Society, 41, 2, 177-187 (2012) · Zbl 1296.60143 · doi:10.1016/j.jkss.2011.08.002
[14] Liu, J.; Yan, L.; Peng, Z.; Wang, D., Remarks on confidence intervals for self-similarity parameter of a subfractional brownian motion, Abstract and Applied Analysis, 2012 (2012) · Zbl 1235.62119 · doi:10.1155/2012/804942
[15] Tudor, C., Inner product spaces of integrands associated to subfractional Brownian motion, Statistics and Probability Letters, 78, 14, 2201-2209 (2008) · Zbl 1283.60082 · doi:10.1016/j.spl.2008.01.087
[16] Nualart, D., Malliavin Calculus and Related Topics (2006), New York, NY, USA: Springer, New York, NY, USA · Zbl 1099.60003
[17] Tudor, C., Some properties of the sub-fractional Brownian motion, Stochastics, 79, 5, 431-448 (2007) · Zbl 1124.60038 · doi:10.1080/17442500601100331
[18] Eddahbi, M.; Lacayo, R.; Solé, J. L.; Vives, J.; Tudor, C. A., Regularity of the local time for the \(d\) fractional Brownian motion with \(N\), Stochastic Analysis and Applications, 23, 2, 383-400 (2005) · Zbl 1067.60026 · doi:10.1081/SAP-200050121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.