×

A compact-type CIP method for general Korteweg-de Vries equation. (English) Zbl 1474.65290

Summary: We proposed a hybrid compact-CIP scheme to solve the Korteweg-de Vries equation. The algorithm is based on classical constrained interpolation profile (CIP) method, which is coupled with high-order compact scheme for the third derivatives in Korteweg-de Vries equation. Several numerical examples are presented to confirm the high resolution of the proposed scheme.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)

Software:

FDL3DI
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Korteweg, D. J.; de Vries, G., XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philosophical Magazine Series 5, 39, 240, 422-443 (1895) · JFM 26.0881.02
[2] Zabusky, N. J.; Kruskal, M. D., Interaction of “solitons” in a collisionless plasma and the recurrence of initial states, Physical Review Letters, 15, 6, 240-243 (1965) · Zbl 1201.35174
[3] Yan, J.; Shu, C.-W., A local discontinuous Galerkin method for KdV type equations, SIAM Journal on Numerical Analysis, 40, 2, 769-791 (2002) · Zbl 1021.65050
[4] Helal, M. A.; Mehanna, M. S., A comparison between two different methods for solving KdV-Burgers equation, Chaos, Solitons and Fractals, 28, 2, 320-326 (2006) · Zbl 1084.65079
[5] Geyikli, T.; Kaya, D., Comparison of the solutions obtained by B-spline FEM and ADM of KdV equation, Applied Mathematics and Computation, 169, 1, 146-156 (2005) · Zbl 1121.65353
[6] Lv, Z.-Q.; Xue, M.; Wang, Y.-S., A new multi-symplectic scheme for the KdV equation, Chinese Physics Letters, 28, 6 (2011)
[7] Wang, H.-P.; Wang, Y.-S.; Hu, Y.-Y., An explicit scheme for the KdV equation, Chinese Physics Letters, 25, 7, 2335-2338 (2008)
[8] Zhao, P. F.; Qin, M. Z., Multisymplectic geometry and multisymplectic preissmann scheme for the KdV equation, Journal of Physics A: Mathematical and General, 33, 18, 3613-3626 (2000) · Zbl 0989.37062
[9] Ascher, U. M.; McLachlan, R. I., Multisymplectic box schemes and the Korteweg-de Vries equation, Applied Numerical Mathematics, 48, 3-4, 255-269 (2004) · Zbl 1038.65138
[10] Wang, Y.; Wang, B.; Qin, M., Numerical implementation of the multisymplectic Preissman scheme and its equivalent schemes, Applied Mathematics and Computation, 149, 2, 299-326 (2004) · Zbl 1047.65107
[11] Wang, Y.; Wang, B.; Chen, X., Multisymplectic Euler box scheme for the KdV equation, Chinese Physics Letters, 24, 2, article 312 (2007)
[12] Aksan, E. N.; Özdeş, A., Numerical solution of Korteweg-de Vries equation by Galerkin B-spline finite element method, Applied Mathematics and Computation, 175, 2, 1256-1265 (2006) · Zbl 1093.65087
[13] Dağ, I.; Dereli, Y., Numerical solutions of KdV equation using radial basis functions, Applied Mathematical Modelling, 32, 4, 535-546 (2008) · Zbl 1132.65096
[14] Dehghan, M.; Shokri, A., A numerical method for KdV equation using collocation and radial basis functions, Nonlinear Dynamics. An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems, 50, 1-2, 111-120 (2007) · Zbl 1185.76832
[15] Hao, S.-Y.; Xie, S.-S.; Yi, S.-C., The Galerkin method for the KdV equation using a new basis of smooth piecewise cubic polynomials, Applied Mathematics and Computation, 218, 17, 8659-8671 (2012) · Zbl 1245.65127
[16] Lin, G.; Grinberg, L.; Karniadakis, G. E., Numerical studies of the stochastic Korteweg-de Vries equation, Journal of Computational Physics, 213, 2, 676-703 (2006) · Zbl 1089.65010
[17] Liu, R.-X.; Wu, L.-L., Small-stencil Padé schemes to solve nonlinear evolution equations, Applied Mathematics and Mechanics, 26, 7, 872-881 (2005) · Zbl 1144.76323
[18] Yu, R.-G.; Wang, R.-H.; Zhu, C.-G., A numerical method for solving KdV equation with multilevel B-spline quasi-interpolation, Applicable Analysis, 92, 8, 1682-1690 (2013) · Zbl 1308.65148
[19] Takewaki, H.; Nishiguchi, A.; Yabe, T., Cubic interpolated pseudoparticle method (CIP) for solving hyperbolic-type equations, Journal of Computational Physics, 61, 2, 261-268 (1985) · Zbl 0607.65055
[20] Takewaki, H.; Yabe, T., The cubic-interpolated pseudo particle (CIP) method: application to nonlinear and multi-dimensional hyperbolic equations, Journal of Computational Physics, 70, 2, 355-372 (1987) · Zbl 0624.65079
[21] Yabe, T.; Aoki, T., A universal solver for hyperbolic equations by cubic-polynomial interpolation. I. One-dimensional solver, Computer Physics Communications, 66, 2-3, 219-232 (1991) · Zbl 0991.65521
[22] Ishikawa, T.; Yabe, T.; Wang, P. Y.; Aoki, T.; Ikeda, F., A universal solver for hyperbolicequations by cubic-polynomial interpolation. 2. 2-dimensional and 3-dimensional solvers, Computer Physics Communications, 66, 2-3, 233-242 (1991) · Zbl 0991.65522
[23] Lele, S. K., Compact finite difference schemes with spectral-like resolution, Journal of Computational Physics, 103, 1, 16-42 (1992) · Zbl 0759.65006
[24] Li, J.; Visbal, M. R., High-order compact schemes for nonlinear dispersive waves, Journal of Scientific Computing, 26, 1, 1-23 (2006) · Zbl 1089.76043
[25] Hassan, M. M., Exact solitary wave solutions for a generalized KdV-Burgers equation, Chaos, Solitons and Fractals, 19, 5, 1201-1206 (2004) · Zbl 1068.35129
[26] Yabe, T.; Tanaka, R.; Nakamura, T.; Xiao, F., An exactly conservative semi-lagrangian scheme (CIP-CSL) in one dimension, Monthly Weather Review, 129, 2, 332-344 (2001)
[27] Gaitonde, D. V.; Visbal, M. R., High-order schemes for navier-stokes equations: algorithm and implementation into fdl3di (1998), DTIC Document
[28] Miura, R. M.; Gardner, C. S.; Kruskal, M. D., Korteweg-de Vries equation and generalizations: II. Existence of conservation laws and constants of motion, Journal of Mathematical Physics, 9, 1204-1209 (1968) · Zbl 0283.35019
[29] Helal, M. A.; Mehanna, M. S., A comparative study between two different methods for solving the general Korteweg-de Vries equation (GKdV), Chaos, Solitons and Fractals, 33, 3, 725-739 (2007) · Zbl 1133.65084
[30] Ismail, H. N. A.; Raslan, K. R.; Salem, G. S. E., Solitary wave solutions for the general KDV equation by Adomian decomposition method, Applied Mathematics and Computation, 154, 1, 17-29 (2004) · Zbl 1051.65100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.