×

On modified \((\alpha - \eta)\)-contractive mappings. (English) Zbl 1474.54192

Summary: N. Hussain et al. [J. Inequal. Appl. 2013, Paper No. 114, 11 p. (2013; Zbl 1293.54023)] established new fixed point results in complete metric space. In this paper, we prove fixed point results of \(\alpha\)-admissible mappings with respect to \(\eta\), for modified contractive condition in complete metric space. An example is given to show the validity of our work. Our results generalize/improve several recent and classical results existing in the literature.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
47H10 Fixed-point theorems

Citations:

Zbl 1293.54023

References:

[1] Abbas, M.; Rhoades, B. E., Common fixed point theorems for hybrid pairs of occasionally weakly compatible mappings satisfying generalized contractive condition of integral type, Fixed Point Theory and Applications, 2007 (2007) · Zbl 1153.54307 · doi:10.1155/2007/54101
[2] Abbas, M.; Rhoades, B. E., Common fixed point theorems for occasionally weakly compatible mappings satisfying a generalized contractive condition, Mathematical Communications, 13, 2, 295-301 (2008) · Zbl 1175.47050
[3] Abbas, M.; Khan, A. R., Common fixed points of generalized contractive hybrid pairs in symmetric spaces, Fixed Point Theory and Applications, 2009 (2009) · Zbl 1185.54038 · doi:10.1155/2009/869407
[4] Abdeljawad, T., Meir-Keeler \(\alpha \)-contractive fixed and common fixed point theorems, Fixed Point Theory and Applications, 2013, article 19 (2013) · Zbl 1295.54038 · doi:10.1186/1687-1812-2013-19
[5] Aliouche, A., A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying a contractive condition of integral type, Journal of Mathematical Analysis and Applications, 322, 2, 796-802 (2006) · Zbl 1111.47046 · doi:10.1016/j.jmaa.2005.09.068
[6] Arshad, M., Some fixed point results for \(\alpha^* - \psi \)-contractive multi-valued mapping in partial metric spaces
[7] Arshad, M.; Azam, A.; Vetro, P., Some common fixed point results in cone metric spaces, Fixed Point Theory and Applications, 2009 (2009) · Zbl 1167.54313 · doi:10.1155/2009/493965
[8] Banach, S., Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta Mathematicae, 3, 133-181 (1922) · JFM 48.0201.01
[9] Branciari, A., A fixed point theorem for mappings satisfying a general contractive condition of integral type, International Journal of Mathematics and Mathematical Sciences, 29, 9, 531-536 (2002) · Zbl 0993.54040 · doi:10.1155/S0161171202007524
[10] Karapinar, E.; Samet, B., Generalized \(\left(\alpha - \psi\right)\) contractive type mappings and related fixed point theorems with applications, Abstract and Applied Analysis, 2012 (2012) · Zbl 1252.54037 · doi:10.1155/2012/793486
[11] Gairola, U. C.; Rawat, A. S., A fixed point theorem for integral type inequality, International Journal of Mathematical Analysis, 2, 13-16, 709-712 (2008) · Zbl 1191.54038
[12] Geraghty, M. A., On contractive mappings, Proceedings of the American Mathematical Society, 40, 604-608 (1973) · Zbl 0245.54027 · doi:10.1090/S0002-9939-1973-0334176-5
[13] Gu, F.; Ye, H., Common fixed point theorems of Altman integral type mappings in \(G\)-metric spaces, Abstract and Applied Analysis, 2012 (2012) · Zbl 1396.54038 · doi:10.1155/2012/630457
[14] Gupta, V.; Mani, N., A common fixed point theorem for two weakly compatible mappings satisfying a new contractive condition of integral type, Mathematical Theory and Modeling, 1, 1 (2011)
[15] Haghi, R. H.; Rezapour, S.; Shahzad, N., Some fixed point generalizations are not real generalizations, Nonlinear Analysis, 74, 5, 1799-1803 (2011) · Zbl 1251.54045 · doi:10.1016/j.na.2010.10.052
[16] Hussain, N.; Arshad, M.; Shoaib, A., Shoaib and Fahimuddin, Common fixed point results for \(\alpha-\psi \)-contractions on a metric space endowed with graph, Journal of Inequalities and Applications, 2014, article 136 (2014) · Zbl 1310.54050
[17] Hussain, N.; Karapınar, E.; Salimi, P.; Akbar, F., \(α\)-admissible mappings and related fixed point theorems, Journal of Inequalities and Applications, 2013, article 114 (2013) · Zbl 1293.54023 · doi:10.1186/1029-242X-2013-114
[18] Hussain, N.; Abbas, M., Common fixed point results for two new classes of hybrid pairs in symmetric spaces, Applied Mathematics and Computation, 218, 2, 542-547 (2011) · Zbl 1225.54018 · doi:10.1016/j.amc.2011.05.098
[19] Hussain, N.; Cho, Y. J., Weak contractions, common fixed points, and invariant approximations, Journal of Inequalities and Applications, 2009 (2009) · Zbl 1183.47049 · doi:10.1155/2009/390634
[20] Jungck, G.; Rhoades, B. E., Fixed points for set valued functions without continuity, Indian Journal of Pure and Applied Mathematics, 29, 3, 227-238 (1998) · Zbl 0904.54034
[21] Jungck, G.; Hussain, N., Compatible maps and invariant approximations, Journal of Mathematical Analysis and Applications, 325, 2, 1003-1012 (2007) · Zbl 1110.54024 · doi:10.1016/j.jmaa.2006.02.058
[22] Jungck, G.; Rhoades, B. E., Fixed point theorems for occasionally weakly compatible mappings, Fixed Point Theory, 7, 2, 287-296 (2006) · Zbl 1118.47045
[23] Jungck, G.; Rhoades, B. E., Erratum: “Fixed point theorems for occasionally weakly compatible mappings” [Fixed Point Theory, vol. 7 (2006), no. 2, 287-296], Fixed Point Theory, 9, 1, 383-384 (2008) · Zbl 1118.47045
[24] Kannan, R., Some results on fixed points, Bulletin of the Calcutta Mathematical Society, 60, 71-76 (1968) · Zbl 0209.27104
[25] Moradi, S.; Omid, M., A fixed point theorem for integral type inequality depending on another function, Research Journal of Applied Sciences, Engineering and Technology, 2, 3, 239-2442 (2010)
[26] Nadler, S. B., Multi-valued contraction mappings, Pacific Journal of Mathematics, 30, 475-488 (1969) · Zbl 0187.45002 · doi:10.2140/pjm.1969.30.475
[27] Ojha, D. B.; Mishra, M. K.; Katoch, U., A common fixed point theorem satisfying integral type for occasionally weakly compatible maps, Research Journal of Applied Sciences, Engineering and Technology, 2, 3, 239-244 (2010)
[28] Pathak, H. K.; Tiwari, R.; Khan, M. S., A common fixed point theorem satisfying integral type implicit relations, Applied Mathematics E-Notes, 7, 222-228 (2007) · Zbl 1178.54023
[29] Rhoades, B. E., A comparison of various definitions of contractive mappings, Transactions of the American Mathematical Society, 226, 257-290 (1977) · Zbl 0365.54023 · doi:10.1090/S0002-9947-1977-0433430-4
[30] Rhoades, B. E., Two fixed-point theorems for mappings satisfying a general contractive condition of integral type, International Journal of Mathematics and Mathematical Sciences, 63, 4007-4013 (2003) · Zbl 1052.47052 · doi:10.1155/S0161171203208024
[31] Shrivastava, P. K.; Bawa, N. P. S.; Nigam, S. K., Fixed point theorems for hybrid contractions, Varahmihir Journal of Mathematical Sciences, 2, 2, 275-281 (2002) · Zbl 1033.54523
[32] Salimi, P.; Latif, A.; Hussain, N., Modified \(α-ψ\)-contractive mappings with applications, Fixed Point Theory and Applications, 2013 (2013) · Zbl 1293.54036 · doi:10.1186/1687-1812-2013-151
[33] Samet, B.; Vetro, C.; Vetro, P., Fixed point theorems for \(\alpha - \psi \)-contractive type mappings, Nonlinear Analysis: Theory, Methods & Applications, 75, 4, 2154-2165 (2012) · Zbl 1242.54027 · doi:10.1016/j.na.2011.10.014
[34] Vijayaraju, P.; Rhoades, B. E.; Mohanraj, R., A fixed point theorem for a pair of maps satisfying a general contractive condition of integral type, International Journal of Mathematics and Mathematical Sciences, 15, 2359-2364 (2005) · Zbl 1113.54027 · doi:10.1155/IJMMS.2005.2359
[35] Li, Y.; Gu, F., Common fixed point theorem of altman integral type mappings, Journal of Nonlinear Science and Its Applications, 2, 4, 214-218 (2009) · Zbl 1173.54322
[36] Zhang, X., Common fixed point theorems for some new generalized contractive type mappings, Journal of Mathematical Analysis and Applications, 333, 2, 780-786 (2007) · Zbl 1133.54028 · doi:10.1016/j.jmaa.2006.11.028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.