Chen, Jie; Sun, Junwei; Chi, Ming; Cheng, Xin-Ming A novel scheme adaptive hybrid dislocated synchronization for two identical and different memristor chaotic oscillator systems with uncertain parameters. (English) Zbl 1474.34421 Abstr. Appl. Anal. 2014, Article ID 675840, 10 p. (2014). Summary: The drive system can synchronize with the response system by the scaling factor in the traditional projective synchronization. This paper proposes a novel adaptive hybrid dislocated synchronization with uncertain parameters scheme for chaos synchronization using the Lyapunov stability theory. The drive system is synchronized by the sum of hybrid dislocated state variables for the response system. By designing effective hybrid dislocated adaptive controller and hybrid dislocated adaptive law of the parameters estimation, we investigate the synchronization of two identical memristor chaotic oscillator systems and two different memristor chaotic oscillator systems with uncertain parameters. Finally, the numerical simulation examples are provided to show the effectiveness of our method. Cited in 2 Documents MSC: 34H10 Chaos control for problems involving ordinary differential equations 34D06 Synchronization of solutions to ordinary differential equations 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior 93C40 Adaptive control/observation systems PDF BibTeX XML Cite \textit{J. Chen} et al., Abstr. Appl. Anal. 2014, Article ID 675840, 10 p. (2014; Zbl 1474.34421) Full Text: DOI References: [1] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Physical Review Letters, 64, 8, 821-824 (1990) · Zbl 0938.37019 [2] Ge, Z.-M.; Chen, Y.-S., Synchronization of unidirectional coupled chaotic systems via partial stability, Chaos, Solitons and Fractals, 21, 1, 101-111 (2004) · Zbl 1048.37027 [3] Fu, G.; Li, Z., Robust adaptive anti-synchronization of two different hyperchaotic systems with external uncertainties, Communications in Nonlinear Science and Numerical Simulation, 16, 1, 395-401 (2011) · Zbl 1221.93126 [4] He, W.; Cao, J., Generalized synchronization of chaotic systems: an auxiliary system approach via matrix measure, Chaos, 19, 1 (2009) · Zbl 1311.34113 [5] Koronovskii, A. A.; Moskalenko, O. I.; Hramov, A. E., On the use of chaotic synchronization for secure communication, Physics-Uspekhi, 52, 12, 1213-1238 (2009) [6] Koronovskii, A. A.; Moskalenko, O. I.; Hramov, A. E., Hidden data transmission using generalized synchronization in the presence of noise, Technical Physics, 55, 4, 435-441 (2010) [7] Roy, P. K.; Hens, C.; Grosu, I.; Dana, S. K., Engineering generalized synchronization in chaotic oscillators, Chaos, 21, 1 (2011) · Zbl 1345.34100 [8] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J., Phase synchronization of chaotic oscillators, Physical Review Letters, 76, 11, 1804-1807 (1996) [9] Ho, M.-C.; Hung, Y.-C.; Chou, C.-H., Phase and anti-phase synchronization of two chaotic systems by using active control, Physics Letters A, 296, 1, 43-48 (2002) · Zbl 1098.37529 [10] Bhowmick, S. K.; Pal, P.; Roy, P. K.; Dana, S. K., Lag synchronization and scaling of chaotic attractor in coupled system, Chaos, 22, 2 (2012) · Zbl 1331.34082 [11] Mainieri, R.; Rehacek, J., Projective synchronization in three-dimensional chaotic systems, Physical Review Letters, 82, 15, 3042-3045 (1999) [12] Kocarev, L.; Parlitz, U., Synchronizing spatiotemporal chaos in coupled nonlinear oscillators, Physical Review Letters, 77, 11, 2206-2209 (1996) [13] Li, G.-H., Modified projective synchronization of chaotic system, Chaos, Solitons and Fractals, 32, 5, 1786-1790 (2007) · Zbl 1134.37331 [14] Sun, J.; Shen, Y.; Zhang, G.; Cui, G.; Wang, Y., General hybrid projective complete dislocated synchronization with non-derivative and derivative coupling based on parameter identification in several chaotic and hyperchaotic systems, Chinese Physics B, 22, 4 (2013) [15] Hramov, A. E.; Koronovskii, A. A., Time scale synchronization of chaotic oscillators, Physica D, 206, 3-4, 252-264 (2005) · Zbl 1093.37010 [16] Runzi, L.; Yinglan, W.; Shucheng, D., Combination synchronization of three classic chaotic systems using active backstepping design, Chaos, 21, 4 (2011) · Zbl 1317.93114 [17] Luo, R.; Wang, Y., Active backstepping-based combination synchronization of three different chaotic systems, Advanced Science, Engi- Neering and Medicine, 4, 2, 142-147 (2012) [18] Sun, J.; Shen, Y.; Zhang, G.; Xu, C.; Cui, G., Combination-combination synchronization among four identical or different chaotic systems, Nonlinear Dynamics, 73, 3, 1211-1222 (2013) · Zbl 1281.34075 [19] Sun, J.; Shen, Y.; Wang, X.; Chen, J., Finite-time combination-combination synchronization of four different chaotic systems with unknown parameters via sliding mode control, Nonlinear Dynamics (2013) · Zbl 1319.37027 [20] Sun, J.; Shen Y. Quan, Y.; Xu, C., Compound synchronization of four memristor chaotic oscillator systems and secure communication, Chaos, 23, 1 (2013) · Zbl 1319.34093 [21] Ott, E.; Grebogi, C.; Yorke, J. A., Controlling chaos, Physical Review Letters, 64, 11, 1196-1199 (1990) · Zbl 0964.37501 [22] Li, T.; Yu, J.; Wang, Z., Delay-range-dependent synchronization criterion for Lur’e systems with delay feedback control, Communications in Nonlinear Science and Numerical Simulation, 14, 5, 1796-1803 (2009) · Zbl 1221.93224 [23] Zhang, H. G.; Ma, T. D.; Huang, G.-B.; Wang, Z. L., Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control, IEEE Transactions on Systems, Man, and Cybernetics B, 40, 3, 831-844 (2010) [24] Chen, H.-H.; Sheu, G.-J.; Lin, Y.-L.; Chen, C.-S., Chaos synchronization between two different chaotic systems via nonlinear feedback control, Nonlinear Analysis: Theory, Methods & Applications, 70, 12, 4393-4401 (2009) · Zbl 1171.34324 [25] Agiza, H. N.; Yassen, M. T., Synchronization of Rossler and Chen chaotic dynamical systems using active control, Physics Letters A, 278, 4, 191-197 (2001) · Zbl 0972.37019 [26] Yu, Y.; Li, H.-X., Adaptive hybrid projective synchronization of uncertain chaotic systems based on backstepping design, Nonlinear Analysis: Real World Applications, 12, 1, 388-393 (2011) · Zbl 1214.34042 [27] Zhang, H. G.; Huang, W.; Wang, Z. L.; Chai, T. Y., Adaptive synchronization between two different chaotic systems with unknown parameters, Physics Letters A, 350, 5-6, 363-366 (2006) · Zbl 1195.93121 [28] Yau, H.-T., Design of adaptive sliding mode controller for chaos synchronization with uncertainties, Chaos, Solitons and Fractals, 22, 2, 341-347 (2004) · Zbl 1060.93536 [29] Xie, W.; Wen, C.; Li, Z., Impulsive control for the stabilization and synchronization of Lorenz systems, Physics Letters A, 275, 1-2, 67-72 (2000) · Zbl 1115.93347 [30] Sun, J.; Shen, Y.; Zhang, G., Transmission projective synchronization of multi-systems with non-delayed and delayed coupling via impulsive control, Chaos, 22, 4 (2012) · Zbl 1319.34108 [31] Ghosh, D.; Grosu, I.; Dana, S. K., Design of coupling for synchronization in time-delayed systems, Chaos, 22, 3 (2012) · Zbl 1319.93026 [32] Sun, J.; Yin, Q., Robust fault-tolerant full-order and reduced-order observer synchronization for differential inclusion chaotic systems with unknown disturbances and parameters, Journal of Vibration and Control (2013) · Zbl 1349.34211 [33] Wen, G.; Xu, D., Nonlinear observer control for full-state projective synchronization in chaotic continuous-time systems, Chaos, Solitons and Fractals, 26, 1, 71-77 (2005) · Zbl 1122.93311 [34] Park, J. H., Adaptive modified projective synchronization of a unified chaotic system with an uncertain parameter, Chaos, Solitons & Fractals, 34, 5, 1152-1159 (2007) [35] Park, J. H., Adaptive controller design for modified projective synchronization of Genesio-Tesi chaotic system with uncertain parameters, Chaos, Solitons and Fractals, 34, 4, 1154-1159 (2007) · Zbl 1142.93428 [36] Park, J. H., Adaptive synchronization of a four-dimensional chaotic system with uncertain parameters, International Journal of Nonlinear Sciences and Numerical Simulation, 6, 3, 305-310 (2005) · Zbl 1401.93124 [37] Park, J. H., Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters, Journal of Computational and Applied Mathematics, 213, 1, 288-293 (2008) · Zbl 1137.93035 [38] Xu, Y.; Zhou, W.; Fang, J.-A., Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lü chaotic system, Chaos, Solitons and Fractals, 42, 3, 1305-1315 (2009) · Zbl 1198.93188 [39] Wen, S.; Zeng, Z.; Huang, T., Adaptive synchronization of memristor-based Chua’s circuits, Physics Letters A, 376, 44, 2775-2780 (2012) · Zbl 1396.34032 [40] Bao, B.; Liu, Z.; Xu, J., Transient chaos in smooth memristor oscillator, Chinese Physics B, 19, 3 (2010) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.