×

Global stability analysis of a nonautonomous stage-structured competitive system with toxic effect and double maturation delays. (English) Zbl 1474.92081

Summary: We investigate a nonautonomous two-species competitive system with stage structure and double time delays due to maturation for two species, where toxic effect of toxin liberating species on nontoxic species is considered and the inhibiting effect is zero in absence of either species. Positivity and boundedness of solutions are analytically studied. By utilizing some comparison arguments, an iterative technique is proposed to discuss permanence of the species within competitive system. Furthermore, existence of positive periodic solutions is investigated based on continuation theorem of coincidence degree theory. By constructing an appropriate Lyapunov functional, sufficient conditions for global stability of the unique positive periodic solution are analyzed. Numerical simulations are carried out to show consistency with theoretical analysis.

MSC:

92D25 Population dynamics (general)

References:

[1] Aiello, W. G.; Freedman, H. I., A time-delay model of single-species growth with stage structure, Mathematical Biosciences, 101, 2, 139-153 (1990) · Zbl 0719.92017 · doi:10.1016/0025-5564(90)90019-U
[2] Zeng, G. Z.; Chen, L. S.; Sun, L. H.; Liu, Y., Permanence and the existence of the periodic solution of the non-autonomous two-species competitive model with stage structure, Advances in Complex Systems, 7, 3-4, 385-393 (2004) · Zbl 1080.34037 · doi:10.1142/S0219525904000238
[3] Xu, R.; Chaplain, M. A. J.; Davidson, F. A., Modelling and analysis of a competitive model with stage structure, Mathematical and Computer Modelling, 41, 2-3, 159-175 (2005) · Zbl 1066.92058 · doi:10.1016/j.mcm.2004.08.003
[4] Xu, D.; Zhao, X., Dynamics in a periodic competitive model with stage structure, Journal of Mathematical Analysis and Applications, 311, 2, 417-438 (2005) · Zbl 1077.37051 · doi:10.1016/j.jmaa.2005.02.062
[5] Ahmad, S.; Lazer, A. C., Average growth and total permanence in a competitive Lotka-Volterra system, Annali di Matematica Pura ed Applicata, 185, S47-S67 (2006) · Zbl 1162.34329 · doi:10.1007/s10231-004-0136-2
[6] Hou, Z., On permanence of all subsystems of competitive Lotka-Volterra systems with delays, Nonlinear Analysis: Real World Applications, 11, 5, 4285-4301 (2010) · Zbl 1207.34107 · doi:10.1016/j.nonrwa.2010.05.015
[7] Lin, Z. G., Time delayed parabolic system in a two-species competitive model with stage structure, Journal of Mathematical Analysis and Applications, 315, 1, 202-215 (2006) · Zbl 1091.35108 · doi:10.1016/j.jmaa.2005.06.012
[8] Chen, F., Almost periodic solution of the non-autonomous two-species competitive model with stage structure, Applied Mathematics and Computation, 181, 1, 685-693 (2006) · Zbl 1163.34030 · doi:10.1016/j.amc.2006.01.055
[9] Liu, Z.; Fan, M.; Chen, L., Globally asymptotic stability in two periodic delayed competitive systems, Applied Mathematics and Computation, 197, 1, 271-287 (2008) · Zbl 1148.34046 · doi:10.1016/j.amc.2007.07.086
[10] Xiong, X.; Zhang, Z., Periodic solutions of a discrete two-species competitive model with stage structure, Mathematical and Computer Modelling, 48, 3-4, 333-343 (2008) · Zbl 1145.34334 · doi:10.1016/j.mcm.2007.10.004
[11] Kouche, M.; Tatar, N.; Liu, S., Permanence and existence of a positive periodic solution to a periodic stage-structured system with infinite delay, Applied Mathematics and Computation, 202, 2, 620-638 (2008) · Zbl 1156.34065 · doi:10.1016/j.amc.2008.03.002
[12] Tian, B. D.; Qiu, Y. H.; Chen, N., Periodic and almost periodic solution for a non-autonomous epidemic predator-prey system with time-delay, Applied Mathematics and Computation, 215, 2, 779-790 (2009) · Zbl 1171.92042 · doi:10.1016/j.amc.2009.06.006
[13] Hu, H.; Teng, Z.; Jiang, H., On the permanence in non-autonomous Lotka-Volterra competitive system with pure-delays and feedback controls, Nonlinear Analysis: Real World Applications, 10, 3, 1803-1815 (2009) · Zbl 1169.93011 · doi:10.1016/j.nonrwa.2008.02.017
[14] Wei, F. Y.; Lin, Y. R.; Que, L. L.; Chen, Y. Y.; Wu, Y. P.; Xue, Y. F., Periodic solution and global stability for a nonautonomous competitive Lotka-Volterra diffusion system, Applied Mathematics and Computation, 216, 10, 3097-3104 (2010) · Zbl 1197.34084 · doi:10.1016/j.amc.2010.04.040
[15] Al-Omari, J. F. M.; Al-Omari, S. K. Q., Global stability in a structured population competition model with distributed maturation delay and harvesting, Nonlinear Analysis. Real World Applications, 12, 3, 1485-1499 (2011) · Zbl 1217.93147 · doi:10.1016/j.nonrwa.2010.10.008
[16] Shi, C. L.; Li, Z.; Chen, F. D., Extinction in a nonautonomous Lotka-Volterra competitive system with infinite delay and feedback controls, Nonlinear Analysis: Real World Applications, 13, 5, 2214-2226 (2012) · Zbl 1268.34171 · doi:10.1016/j.nonrwa.2012.01.016
[17] Li, Y.; Ye, Y., Multiple positive almost periodic solutions to an impulsive non-autonomous Lotka-Volterra predator-prey system with harvesting terms, Communications in Nonlinear Science and Numerical Simulation, 18, 11, 3190-3201 (2013) · Zbl 1329.92107 · doi:10.1016/j.cnsns.2013.03.014
[18] Zhao, J. D.; Zhang, Z. C.; Ju, J., Necessary and sufficient conditions for permanence and extinction in a three dimensional competitive Lotka-Volterra system, Applied Mathematics and Computation, 230, 587-596 (2014) · Zbl 1410.34145 · doi:10.1016/j.amc.2013.12.140
[19] Zhang, H.; Li, Y.; Jing, B.; Zhao, W., Global stability of almost periodic solution of multispecies mutualism system with time delays and impulsive effects, Applied Mathematics and Computation, 232, 1, 1138-1150 (2014) · Zbl 1410.34207 · doi:10.1016/j.amc.2014.01.131
[20] Thieme, H. R., Mathematics in Population Biology (2003), Princeton, NJ, USA: Princeton University Press, Princeton, NJ, USA · Zbl 1054.92042
[21] Samanta, G. P., A two-species competitive system under the influence of toxic substances, Applied Mathematics and Computation, 216, 1, 291-299 (2010) · Zbl 1184.92058 · doi:10.1016/j.amc.2010.01.061
[22] Maynard Smith, J., Models in Ecology (1974), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0312.92001
[23] Bandyopadhyay, M., Dynamical analysis of a allelopathic phytoplankton model, Journal of Biological Systems, 14, 2, 205-217 (2006) · Zbl 1105.92035 · doi:10.1142/S021833900600174X
[24] Ma, Z. E.; Cui, G. R.; Wang, W. D., Persistence and extinction of a population in a polluted environment, Mathematical Biosciences, 101, 1, 75-97 (1990) · Zbl 0714.92027 · doi:10.1016/0025-5564(90)90103-6
[25] Wang, W. D.; Ma, Z. E., Permanence of populations in a polluted environment, Mathematical Biosciences, 122, 2, 235-248 (1994) · Zbl 0817.92018 · doi:10.1016/0025-5564(94)90060-4
[26] Zhen, J.; Ma, Z. E., Periodic solutions for delay differential equations model of plankton allelopathy, Computers & Mathematics with Applications, 44, 3-4, 491-500 (2002) · Zbl 1094.34542 · doi:10.1016/S0898-1221(02)00163-3
[27] Wang, F.; Ma, Z., Persistence and periodic orbits for an SIS model in a polluted environment, Computers & Mathematics with Applications, 47, 4-5, 779-792 (2004) · Zbl 1064.92040 · doi:10.1016/S0898-1221(04)90064-8
[28] Li, Z.; Chen, F. D., Extinction in periodic competitive stage-structured Lotka-Volterra model with the effects of toxic substances, Journal of Computational and Applied Mathematics, 231, 1, 143-153 (2009) · Zbl 1165.92322 · doi:10.1016/j.cam.2009.02.004
[29] Song, X. Y.; Chen, L. S., Optimal harvesting and stability for a two-species competitive system with stage structure, Mathematical Biosciences, 170, 2, 173-186 (2001) · Zbl 1028.34049 · doi:10.1016/S0025-5564(00)00068-7
[30] Wang, W.; Mulone, G.; Salemi, F.; Salone, V., Permanence and stability of a stage-structured predator-prey model, Journal of Mathematical Analysis and Applications, 262, 2, 499-528 (2001) · Zbl 0997.34069 · doi:10.1006/jmaa.2001.7543
[31] Gaines, R. E.; Mawhin, J. L., Coincidence Degree and Nonlinear Differential Equations (1977), Berlin, Germany: Springer, Berlin, Germany · Zbl 0339.47031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.