×

A proof of Łojasiewicz’s theorem. (English) Zbl 1474.46080

Summary: We give a necessary and sufficient condition for a primitive of a distribution to have the value at a point in the sense of Łojasiewicz. A formula defining the indefinite integral of a distribution with a basepoint is introduced, and further structural results are discussed.

MSC:

46F25 Distributions on infinite-dimensional spaces
46F10 Operations with distributions and generalized functions
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Łojasiewicz, S., Sur la valeur et la limite d’une distribution en un point, Studia Mathematica, 16, 1-36 (1957) · Zbl 0086.09405
[2] Estrada, R.; Vindas, J., A general integral, Dissertationes Mathematicae, 483, 1-49 (2012) · Zbl 1245.26006
[3] Vindas, J.; Pilipović, S., Structural theorems for quasiasymptotics of distributions at the origin, Mathematische Nachrichten, 282, 11, 1584-1599 (2009) · Zbl 1189.46032
[4] Gel’fand, I. M.; Shilov, G. E., Generalized Functions. Vol. 1: Properties and Operations (1964), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0115.33101
[5] Antosik, P.; Mikusiński, J.; Sikorski, R., Theory of Distributions. The Sequential Approach (1973), Amsterdam, The Netherlands: Elsevier Scientific, Amsterdam, The Netherlands · Zbl 0267.46028
[6] Łojasiewicz, S., Sur la fixation des variables dans une distribution, Studia Mathematica, 17, 1-64 (1958) · Zbl 0086.09501
[7] Shiraishi, R.; Itano, M., On the multiplicative products of distributions, Journal of Science of the Hiroshima University A-I: Mathematics, 28, 223-235 (1964) · Zbl 0141.31901
[8] Itano, M., On the multiplicative products of distributions, Journal of Science of the Hiroshima University A-I: Mathematics, 29, 51-74 (1965) · Zbl 0141.31902
[9] Shiraishi, R., On the value of distributions at a point and the multiplicative products, Journal of Science of the Hiroshima University A-I: Mathematics, 31, 89-104 (1967) · Zbl 0153.16404
[10] Cohen, M. D., On the value of a distribution at a point, Mathematische Zeitschrift, 122, 101-103 (1971) · Zbl 0213.40003
[11] Mikusiński, J., On the value of a distribution at a point, Bulletin de l’Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques, 8, 681-683 (1960) · Zbl 0198.46402
[12] Vernaeve, H.; Vindas, J., Characterization of distributions having a value at a point in the sense of Robinson, Journal of Mathematical Analysis and Applications, 396, 1, 371-374 (2012) · Zbl 1276.46032
[13] Trèves, F., Topological Vector Spaces, Distributions and Kernels (1967), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0171.10402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.