×

An existence theorem for fractional hybrid differential inclusions of Hadamard type with Dirichlet boundary conditions. (English) Zbl 1474.34094

Summary: This paper studies the existence of solutions for a boundary value problem of nonlinear fractional hybrid differential inclusions by using a fixed point theorem due to B. C. Dhage [Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 64, No. 6, 1290–1306 (2006; Zbl 1105.34051)]. The main result is illustrated with the aid of an example.

MSC:

34A60 Ordinary differential inclusions
34A08 Fractional ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations

Citations:

Zbl 1105.34051
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Podlubny, I., Fractional Differential Equations. Fractional Differential Equations, Mathematics in Science and Engineering, 198 (1999), San Diego, Calif, USA: Academic Press, San Diego, Calif, USA · Zbl 0924.34008
[2] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204 (2006), Amsterdam, The Netherlands: Elsevier Science B.V., Amsterdam, The Netherlands · Zbl 1092.45003
[3] Sabatier, J.; Agrawal, O. P.; Machado, J. A. T., Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering (2007), Dordrecht, The Netherlands: Springer, Dordrecht, The Netherlands · Zbl 1116.00014
[4] Ahmad, B.; Nieto, J. J., Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions, Boundary Value Problems, 2011 (2011) · Zbl 1275.45004
[5] Alsaedi, A.; Ntouyas, S. K.; Ahmad, B., Existence results for Langevin fractional differential inclusions involving two fractional orders with four-point multiterm fractional integral boundary conditions, Abstract and Applied Analysis, 2013 (2013) · Zbl 1276.26008 · doi:10.1155/2013/869837
[6] Băleanu, D.; Mustafa, O. G.; Agarwal, R. P., On \(L^p\)-solutions for a class of sequential fractional differential equations, Applied Mathematics and Computation, 218, 5, 2074-2081 (2011) · Zbl 1235.34008 · doi:10.1016/j.amc.2011.07.024
[7] Agarwal, R. P.; Ahmad, B., Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions, Computers & Mathematics with Applications, 62, 3, 1200-1214 (2011) · Zbl 1228.34009 · doi:10.1016/j.camwa.2011.03.001
[8] Graef, J. R.; Kong, L.; Kong, Q., Application of the mixed monotone operator method to fractional boundary value problems, Fractional Differential Calculus, 2, 1, 87-98 (2012) · Zbl 1412.34086
[9] Akyildiz, F. T.; Bellout, H.; Vajravelu, K.; Van Gorder, R. A., Existence results for third order nonlinear boundary value problems arising in nano boundary layer fluid flows over stretching surfaces, Nonlinear Analysis: Real World Applications, 12, 6, 2919-2930 (2011) · Zbl 1231.35155 · doi:10.1016/j.nonrwa.2011.02.017
[10] Ahmad, B.; Nieto, J. J., Sequential fractional differential equations with three-point boundary conditions, Computers & Mathematics with Applications, 64, 10, 3046-3052 (2012) · Zbl 1268.34006 · doi:10.1016/j.camwa.2012.02.036
[11] Bai, Z.; Sun, W., Existence and multiplicity of positive solutions for singular fractional boundary value problems, Computers & Mathematics with Applications, 63, 9, 1369-1381 (2012) · Zbl 1247.34006 · doi:10.1016/j.camwa.2011.12.078
[12] Sakthivel, R.; Mahmudov, N. I.; Nieto, J. J., Controllability for a class of fractional-order neutral evolution control systems, Applied Mathematics and Computation, 218, 20, 10334-10340 (2012) · Zbl 1245.93022 · doi:10.1016/j.amc.2012.03.093
[13] Ahmad, B.; Nieto, J. J., Anti-periodic fractional boundary value problems with nonlinear term depending on lower order derivative, Fractional Calculus and Applied Analysis, 15, 3, 451-462 (2012) · Zbl 1281.34005 · doi:10.2478/s13540-012-0032-1
[14] Agarwal, R. P.; O’Regan, D.; Staněk, S., Positive solutions for mixed problems of singular fractional differential equations, Mathematische Nachrichten, 285, 1, 27-41 (2012) · Zbl 1232.26005 · doi:10.1002/mana.201000043
[15] Wang, J.; Zhou, Y.; Medveud, M., Qualitative analysis for nonlinear fractional differential equations via topological degree method, Topological Methods in Nonlinear Analysis, 40, 2, 245-271 (2012) · Zbl 1282.34013
[16] Cabada, A.; Wang, G., Positive solutions of nonlinear fractional differential equations with integral boundary value conditions, Journal of Mathematical Analysis and Applications, 389, 1, 403-411 (2012) · Zbl 1232.34010 · doi:10.1016/j.jmaa.2011.11.065
[17] Zhang, L.; Ahmad, B.; Wang, G.; Agarwal, R. P., Nonlinear fractional integro-differential equations on unbounded domains in a Banach space, Journal of Computational and Applied Mathematics, 249, 51-56 (2013) · Zbl 1302.45019 · doi:10.1016/j.cam.2013.02.010
[18] Zhou, W.-X.; Chu, Y.-D.; Băleanu, D., Uniqueness and existence of positive solutions for a multi-point boundary value problem of singular fractional differential equations, Advances in Difference Equations, 2013 (2013) · Zbl 1380.34024 · doi:10.1186/1687-1847-2013-114
[19] Ahmad, B.; Ntouyas, S. K.; Alsaedi, A., A study of nonlinear fractional differential equations of arbitrary order with Riemann-Liouville type multistrip boundary conditions, Mathematical Problems in Engineering, 2013 (2013) · Zbl 1296.34011 · doi:10.1155/2013/320415
[20] Ahmad, B.; Ntouyas, S. K., Existence results for higher order fractional differential inclusions with multi-strip fractional integral boundary conditions, Electronic Journal of Qualitative Theory of Differential Equations, 20 (2013) · Zbl 1340.34055
[21] Faieghi, M.; Kuntanapreeda, S.; Delavari, H.; Baleanu, D., LMI-based stabilization of a class of fractional-order chaotic systems, Nonlinear Dynamics, 72, 1-2, 301-309 (2013) · Zbl 1268.93121 · doi:10.1007/s11071-012-0714-6
[22] Nieto, J. J.; Ouahab, A.; Prakash, P., Extremal solutions and relaxation problems for fractional differential inclusions, Abstract and Applied Analysis, 2013 (2013) · Zbl 1293.34012 · doi:10.1155/2013/292643
[23] O’Regan, D.; Staněk, S., Fractional boundary value problems with singularities in space variables, Nonlinear Dynamics, 71, 4, 641-652 (2013) · Zbl 1268.34023 · doi:10.1007/s11071-012-0443-x
[24] Wang, J.; Zhou, Y.; Wei, W., Fractional sewage treatment models with impulses at variable times, Applicable Analysis: An International Journal, 92, 9, 1959-1979 (2013) · Zbl 1279.26021 · doi:10.1080/00036811.2012.715150
[25] Zhai, C.; Hao, M., Mixed monotone operator methods for the existence and uniqueness of positive solutions to Riemann-Liouville fractional differential equation boundary value problems, Boundary Value Problems, 2013 (2013) · Zbl 1300.34024 · doi:10.1186/1687-2770-2013-85
[26] Ahmad, B.; Ntouyas, S. K., Existence results for fractional differential inclusions arising from real estate asset securitization and HIV models, Advances in Difference Equations, 2013 (2013) · Zbl 1379.34024 · doi:10.1186/1687-1847-2013-216
[27] Ahmad, B.; Ntouyas, S. K., New existence results for differential inclusions involving Langevin equation with two indices, Journal of Nonlinear and Convex Analysis, 14, 3, 437-450 (2013) · Zbl 1278.26008
[28] Wang, J.; Zhou, Y.; Fečkan, M., On the nonlocal Cauchy problem for semilinear fractional order evolution equations, Central European Journal of Mathematics, 12, 6, 911-922 (2014) · Zbl 1296.26035 · doi:10.2478/s11533-013-0381-y
[29] Graef, J. R.; Kong, L.; Wang, M., Existence and uniqueness of solutions for a fractional boundary value problem on a graph, Fractional Calculus and Applied Analysis, 17, 2, 499-510 (2014) · Zbl 1308.34012 · doi:10.2478/s13540-014-0182-4
[30] Punzo, F.; Terrone, G., On the Cauchy problem for a general fractional porous medium equation with variable density, Nonlinear Analysis: Theory, Methods & Applications, 98, 27-47 (2014) · Zbl 1284.35005 · doi:10.1016/j.na.2013.12.007
[31] Liu, X.; Liu, Z.; Fu, X., Relaxation in nonconvex optimal control problems described by fractional differential equations, Journal of Mathematical Analysis and Applications, 409, 1, 446-458 (2014) · Zbl 1311.49033 · doi:10.1016/j.jmaa.2013.07.032
[32] Razminia, K.; Razminia, A.; Tenreiro Machado, J. A., Analysis of diffusion process in fractured reservoirs using fractional derivative approach, Communications in Nonlinear Science and Numerical Simulation, 19, 9, 3161-3170 (2014) · Zbl 1458.76096 · doi:10.1016/j.cnsns.2014.01.025
[33] Choudhary, S.; Daftardar-Gejji, V., Nonlinear multi-order fractional differential equations with periodic/anti-periodic boundary conditions, Fractional Calculus and Applied Analysis, 17, 2, 333-347 (2014) · Zbl 1305.34009 · doi:10.2478/s13540-014-0172-6
[34] Hadamard, J., Essai sur l’etude des fonctions donnees par leur developpment de Taylor, Journal de Mathématiques Pures et Appliquées Série, 8, 101-186 (1892) · JFM 24.0359.01
[35] Dhage, B. C., Existence results for neutral functional differential inclusions in Banach algebras, Nonlinear Analysis: Theory, Methods & Applications, 64, 6, 1290-1306 (2006) · Zbl 1105.34051 · doi:10.1016/j.na.2005.06.036
[36] El Borai, M. M.; Abbas, M. I., On some integro-differential equations of fractional orders involving Carathéodory nonlinearities, International Journal of Modern Mathematics, 2, 1, 41-52 (2007) · Zbl 1152.47060
[37] Zhao, Y.; Sun, S.; Han, Z.; Li, Q., Theory of fractional hybrid differential equations, Computers & Mathematics with Applications, 62, 3, 1312-1324 (2011) · Zbl 1228.45017 · doi:10.1016/j.camwa.2011.03.041
[38] Sun, S.; Zhao, Y.; Han, Z.; Li, Y., The existence of solutions for boundary value problem of fractional hybrid differential equations, Communications in Nonlinear Science and Numerical Simulation, 17, 12, 4961-4967 (2012) · Zbl 1352.34011 · doi:10.1016/j.cnsns.2012.06.001
[39] Sidi Ammi, M. R.; El Kinani, E. H.; Torres, D. F. M., Existence and uniqueness of solutions to functional integro-differential fractional equations, Electronic Journal of Differential Equations, 103 (2012) · Zbl 1253.26005
[40] Dhage, B. C.; Ntouyas, S. K., Existence results for boundary value problems for fractional hybrid differential inclucions
[41] Kassim, M. D.; Tatar, N.-E., Well-posedness and stability for a differential problem with Hilfer-Hadamard fractional derivative, Abstract and Applied Analysis, 2013 (2013) · Zbl 1470.34017 · doi:10.1155/2013/605029
[42] Ahmad, B.; Ntouyas, S. K.; Alsaedi, A., On fractional differential inclusions with anti-periodic type integral boundary conditions, Boundary Value Problems, 2013 (2013) · Zbl 1296.34010 · doi:10.1186/1687-2770-2013-82
[43] Ahmad, B.; Ntouyas, S. K., A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations, Fractional Calculus and Applied Analysis, 17, 2, 348-360 (2014) · Zbl 1312.34005 · doi:10.2478/s13540-014-0173-5
[44] Ahmad, B.; Ntouyas, S. K., On Hadamard fractional integro-differential boundary value problems, Journal of Applied Mathematics and Computing (2014) · Zbl 1328.34006 · doi:10.1007/s12190-014-0765-6
[45] Deimling, K., Multivalued Differential Equations. Multivalued Differential Equations, de Gruyter Series in Nonlinear Analysis and Applications, 1 (1992), Berlin, Germany: Walter de Gruyter, Berlin, Germany · Zbl 0760.34002 · doi:10.1515/9783110874228
[46] Hu, S.; Papageorgiou, N. S., Handbook of Multivalued Analysis. Vol. I, Theory. Handbook of Multivalued Analysis. Vol. I, Theory, Mathematics and its Applications, 419 (1997), Dordrecht, The Netherlands: Kluwer Academic, Dordrecht, The Netherlands · Zbl 0887.47001 · doi:10.1007/978-1-4615-6359-4
[47] Lasota, A.; Opial, Z., An application of the Kakutani—Ky Fan theorem in the theory of ordinary differential equations, Bulletin de l’Académie Polonaise des Sciences: Série des Sciences Mathématiques, Astronomiques et Physiques, 13, 781-786 (1965) · Zbl 0151.10703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.