Ding, Ling; Li, Lin; Zhang, Jin-Ling Positive solutions for a nonhomogeneous Kirchhoff equation with the asymptotical nonlinearity in \(R^3\). (English) Zbl 1474.35298 Abstr. Appl. Anal. 2014, Article ID 710949, 10 p. (2014). Summary: We study the following nonhomogeneous Kirchhoff equation: \(-(a + b \int_{R^3} | \nabla u |^2 d x) \Delta u + u = k(x) f(u) + h(x)\), \(x \in R^3\), \(u \in H^1(R^3)\), \(u > 0\), \(x \in R^3\), where \(f\) is asymptotically linear with respect to \(t\) at infinity. Under appropriate assumptions on \(k, f\), and \(h\), existence of two positive solutions is proved by using the Ekeland’s variational principle and the Mountain Pass Theorem in critical point theory. Cited in 2 Documents MSC: 35J60 Nonlinear elliptic equations 35B09 Positive solutions to PDEs 35J20 Variational methods for second-order elliptic equations × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Kirchhoff, G. R., Vorlesungen Über Mathematische Physik (1883), Leipzig, Germany: Teubner, Leipzig, Germany [2] Alves, C. O.; Corrêa, F. J. S. A.; Ma, T. F., Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Computers and Mathematics with Applications, 49, 1, 85-93 (2005) · Zbl 1130.35045 · doi:10.1016/j.camwa.2005.01.008 [3] Bernstein, S., Sur une classe d’equations fonctionnelles aux derivees, Bulletin of the Academy of Sciences of the USSR Series, 4, 1, 17-26 (1940) · JFM 66.0471.01 [4] Pohozaev, S. I., A certain class of quasilinear hyperbolic equations, Matematicheskii Sbornik, 96, 138, 152-166, 168 (1975) · Zbl 0309.35051 [5] Lions, J. L., On some questions in boundary value problems of mathematical physics. Contemporary developments in continuum mechanics and partial differential equations, Proceedings of the International Symposium, Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio De Janeiro, Brazil, 1977. Proceedings of the International Symposium, Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio De Janeiro, Brazil, 1977, North-Holland Mathematics Studies, 284-346 (1978), Amsterdam, The Netherlands: North-Holland Publishing, Amsterdam, The Netherlands · Zbl 0404.35002 [6] Arosio, A.; Panizzi, S., On the well-posedness of the Kirchhoff string, Transactions of the American Mathematical Society, 348, 1, 305-330 (1996) · Zbl 0858.35083 · doi:10.1090/S0002-9947-96-01532-2 [7] Cavalcanti, M. M.; Cavalcanti, V. N. D.; Soriano, J. A., Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation, Advances in Differential Equations, 6, 6, 701-730 (2001) · Zbl 1007.35049 [8] D’Ancona, P.; Spagnolo, S., Global solvability for the degenerate Kirchhoff equation with real analytic data, Inventiones Mathematicae, 108, 1, 247-262 (1992) · Zbl 0785.35067 · doi:10.1007/BF02100605 [9] Cheng, B.; Wu, X., Existence results of positive solutions of Kirchhoff type problems, Nonlinear Analysis: Theory, Methods and Applications, 71, 10, 4883-4892 (2009) · Zbl 1175.35038 · doi:10.1016/j.na.2009.03.065 [10] He, X.; Zou, W., Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Analysis: Theory, Methods and Applications, 70, 3, 1407-1414 (2009) · Zbl 1157.35382 · doi:10.1016/j.na.2008.02.021 [11] Ma, T. F.; Muñoz Rivera, J. E., Positive solutions for a nonlinear nonlocal elliptic transmission problem, Applied Mathematics Letters, 16, 2, 243-248 (2003) · Zbl 1135.35330 · doi:10.1016/S0893-9659(03)80038-1 [12] Mao, A.; Zhang, Z., Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Analysis: Theory, Methods and Applications, 70, 3, 1275-1287 (2009) · Zbl 1160.35421 · doi:10.1016/j.na.2008.02.011 [13] Perera, K.; Zhang, Z., Nontrivial solutions of Kirchhoff-type problems via the Yang index, Journal of Differential Equations, 221, 1, 246-255 (2006) · Zbl 1357.35131 · doi:10.1016/j.jde.2005.03.006 [14] Zhang, Z.; Perera, K., Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, Journal of Mathematical Analysis and Applications, 317, 2, 456-463 (2006) · Zbl 1100.35008 · doi:10.1016/j.jmaa.2005.06.102 [15] He, X.; Zou, W., Multiplicity of solutions for a class of Kirchhoff type problems, Acta Mathematicae Applicatae Sinica, 26, 3, 387-394 (2010) · Zbl 1196.35077 · doi:10.1007/s10255-010-0005-2 [16] Yang, Y.; Zhang, J., Positive and negative solutions of a class of nonlocal problems, Nonlinear Analysis: Theory, Methods and Applications, 73, 1, 25-30 (2010) · Zbl 1191.35269 · doi:10.1016/j.na.2010.02.008 [17] Yang, Y.; Zhang, J., Nontrivial solutions of a class of nonlocal problems via local linking theory, Applied Mathematics Letters, 23, 4, 377-380 (2010) · Zbl 1188.35084 · doi:10.1016/j.aml.2009.11.001 [18] Chen, C.; Kuo, Y.; Wu, T., The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, Journal of Differential Equations, 250, 4, 1876-1908 (2011) · Zbl 1214.35077 · doi:10.1016/j.jde.2010.11.017 [19] Sun, J.; Tang, C., Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Analysis: Theory, Methods and Applications, 74, 4, 1212-1222 (2011) · Zbl 1209.35033 · doi:10.1016/j.na.2010.09.061 [20] Sun, J.; Liu, S., Nontrivial solutions of Kirchhoff type problems, Applied Mathematics Letters, 25, 3, 500-504 (2012) · Zbl 1251.35027 · doi:10.1016/j.aml.2011.09.045 [21] Mao, A.; Luan, S., Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems, Journal of Mathematical Analysis and Applications, 383, 1, 239-243 (2011) · Zbl 1222.35092 · doi:10.1016/j.jmaa.2011.05.021 [22] Cheng, B. T., New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems, Journal of Mathematical Analysis and Applications, 394, 2, 488-495 (2012) · Zbl 1254.35082 · doi:10.1016/j.jmaa.2012.04.025 [23] Chen, S. J.; Li, L., Multiple solutions for the nonhomogeneous Kirchhoff equation on RN, Nonliear Analysis: Real World Applications, 14, 1477-1486 (2012) · Zbl 1335.74024 [24] Jin, J.; Wu, X., Infinitely many radial solutions for Kirchhoff-type problems in \(R^N\), Journal of Mathematical Analysis and Applications, 369, 2, 564-574 (2010) · Zbl 1196.35221 · doi:10.1016/j.jmaa.2010.03.059 [25] Wu, X., Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in \(R^N\), Nonlinear Analysis: Real World Applications, 12, 2, 1278-1287 (2011) · Zbl 1208.35034 · doi:10.1016/j.nonrwa.2010.09.023 [26] Azzollini, A.; d’Avenia, P.; Pomponio, A., Multiple critical points for a class of nonlinear functionals, Annali di Matematica Pura ed Applicata, 190, 3, 507-523 (2011) · Zbl 1230.58014 · doi:10.1007/s10231-010-0160-3 [27] Berestycki, H.; Lions, P.-L., Nonlinear scalar field equations. II: existence of infinitely many solutions, Archive for Rational Mechanics and Analysis, 82, 4, 347-375 (1983) · Zbl 0556.35046 · doi:10.1007/BF00250556 [28] He, X.; Zou, W., Existence and concentration behavior of positive solutions for a Kirchhoff equation in \(R^3\), Journal of Differential Equations, 252, 2, 1813-1834 (2012) · Zbl 1235.35093 · doi:10.1016/j.jde.2011.08.035 [29] Nie, J.; Wu, X., Existence and multiplicity of non-trivial solutions for SchrödingerKirchhoff-type equations with radial potential, Nonlinear Analysis: Theory, Methods and Applications, 75, 8, 3470-3479 (2012) · Zbl 1239.35131 · doi:10.1016/j.na.2012.01.004 [30] Alves, C. O.; Figueiredo, G. M., Nonlinear perturbations of a periodic Kirchhoff equation in \(R^N\), Nonlinear Analysis: Theory, Methods and Applications, 75, 5, 2750-2759 (2012) · Zbl 1264.45008 · doi:10.1016/j.na.2011.11.017 [31] Liu, W.; He, X., Multiplicity of high energy solutions for superlinear Kirchhoff equations, Journal of Applied Mathematics and Computing, 39, 1-2, 473-487 (2012) · Zbl 1295.35226 · doi:10.1007/s12190-012-0536-1 [32] Sun, J.; Chen, H.; Nieto, J. J., On ground state solutions for some non-autonomous Schrödinger-Poisson systems, Journal of Differential Equations, 252, 5, 3365-3380 (2012) · Zbl 1241.35057 · doi:10.1016/j.jde.2011.12.007 [33] Wang, Z.; Zhou, H., Positive solutions for a nonhomogeneous elliptic equation on \(R^N\) without ( AR) condition, Journal of Mathematical Analysis and Applications, 353, 1, 470-479 (2009) · Zbl 1166.35019 · doi:10.1016/j.jmaa.2008.11.080 [34] Liu, C.; Wang, Z.; Zhou, H., Asymptotically linear Schrödinger equation with potential vanishing at infinity, Journal of Differential Equations, 245, 1, 201-222 (2008) · Zbl 1188.35181 · doi:10.1016/j.jde.2008.01.006 [35] Ekeland, I., On the variational principle, Journal of Mathematical Analysis and Applications, 47, 2, 324-353 (1974) · Zbl 0286.49015 · doi:10.1016/0022-247X(74)90025-0 [36] Mawhin, J.; Willem, M., Critical Point Theory and Hamiltonian Systems. Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74 (1989), New York, NY, USA: Springer, New York, NY, USA · Zbl 0676.58017 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.