×

Unified common fixed point theorems for a hybrid pair of mappings via an implicit relation involving altering distance function. (English) Zbl 1474.54139

Summary: The object of this paper is to emphasize the role of a suitable implicit relation involving altering distance function which covers a multitude of contraction conditions in one go. By using this implicit relation, we prove a new coincidence and common fixed point theorem for a hybrid pair of occasionally coincidentally idempotent mappings in a metric space employing the common limit range property. Our main result improves and generalizes a host of previously known results. We also utilize suitable illustrative examples to substantiate the realized improvements in our results.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
47H10 Fixed-point theorems
47J25 Iterative procedures involving nonlinear operators
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Nadler, S. B., Multivalued contraction mappings, Pacific Journal of Mathematics, 20, 2, 457-488 (1969)
[2] Chauhan, S.; Imdad, M.; Karapnar, E.; Fisher, B., An integral type fixed point theorem for multi-valued mappings employing strongly tangential property, Journal of the Egyptian Mathematical Society (2013) · Zbl 1490.54045
[3] Imdad, M.; Khan, M. S.; Sessa, S., On some weak conditions of commutativity in common fixed point theorems, International Journal of Mathematics and Mathematical Sciences, 11, 2, 289-296 (1988) · Zbl 0642.54045
[4] Mizoguchi, N.; Takahashi, W., Fixed point theorems for multivalued mappings on complete metric spaces, Journal of Mathematical Analysis and Applications, 141, 1, 177-188 (1989) · Zbl 0688.54028
[5] Naimpally, S. A.; Singh, S. L.; Whitfield, J. H. M., Coincidence theorems for hybrid contractions, Mathematische Nachrichten, 127, 177-180 (1986) · Zbl 0602.54049
[6] Sessa, S.; Khan, M. S.; Imdad, M., A common fixed point theorem with a weak commutativity condition, Glasnik Matematicki, 21, 41, 225-235 (1986) · Zbl 0603.54046
[7] Suzuki, T., Mizoguchi-Takahashi’s fixed point theorem is a real generalization of Nadler’s, Journal of Mathematical Analysis and Applications, 340, 1, 752-755 (2008) · Zbl 1137.54026
[8] Khan, M. S.; Swaleh, M.; Sessa, S., Fixed point theorems by altering distances between the points, Bulletin of the Australian Mathematical Society, 30, 1, 1-9 (1984) · Zbl 0553.54023
[9] Imdad, M.; Chauhan, S.; Kadelburg, Z.; Vetro, C., Fixed point theorems for non-self mappings in symmetric spaces under \(ϕ\)-weak contractive conditions and an application to functional equations in dynamic programming, Applied Mathematics and Computation, 227, 469-479 (2014) · Zbl 1364.47008
[10] Morales, J. R.; Rojas, E., Some fixed point theorems by altering distance functions, Palestine Journal of Mathematics, 1, 2, 110-116 (2012) · Zbl 1343.47061
[11] Pathak, H. K.; Sharma, R., A note on fixed point theorems of Khan, Swaleh and Sessa, The Mathematics Education, 28, 3, 151-157 (1994) · Zbl 0907.54041
[12] Popa, V.; Mocanu, M., Altering distance and common fixed points under implicit relations, Hacettepe Journal of Mathematics and Statistics, 38, 3, 329-337 (2009) · Zbl 1239.47046
[13] Sastry, K. P. R.; Babu, G. V. R., Fixed point theorems in metric spaces by altering distances, Bulletin of the Calcutta Mathematical Society, 90, 3, 175-182 (1998) · Zbl 0953.54040
[14] Kaneko, H., Single-valued and multivalued \(f\)-contractions, Bollettino della Unione Matematica Italiana, 4, 1, 29-33 (1985) · Zbl 0568.54031
[15] Kaneko, H., A common fixed point of weakly commuting multi-valued mappings, Mathematica Japonica, 33, 5, 741-744 (1988) · Zbl 0664.54031
[16] Singh, S. L.; Ha, K. S.; Cho, Y. J., Coincidence and fixed points of nonlinear hybrid contractions, International Journal of Mathematics and Mathematical Sciences, 12, 2, 247-256 (1989) · Zbl 0669.54024
[17] Kamran, T., Coincidence and fixed points for hybrid strict contractions, Journal of Mathematical Analysis and Applications, 299, 1, 235-241 (2004) · Zbl 1064.54055
[18] Aamri, M.; El Moutawakil, D., Some new common fixed point theorems under strict contractive conditions, Journal of Mathematical Analysis and Applications, 270, 1, 181-188 (2002) · Zbl 1008.54030
[19] Imdad, M.; Chauhan, S.; Soliman, A. H.; Ahmed, M. A., Hybrid fixed point theorems in symmetric spaces via common limit range property · Zbl 1304.54081
[20] Sintunavarat, W.; Kumam, P., Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces, Journal of Applied Mathematics, 2011 (2011) · Zbl 1226.54061
[21] Imdad, M.; Ahmad, A.; Kumar, S., On nonlinear nonself hybrid contractions, Radovi Matematički, 10, 2, 233-244 (2001) · Zbl 1064.54505
[22] Pathak, H. K.; Rodríguez-López, R., Noncommutativity of mappings in hybrid fixed point results, Boundary Value Problems, 2013, article 145 (2013) · Zbl 1294.54034
[23] Kadelburg, Z.; Chauhan, S.; Imdad, M., A hybrid common fixed point theorem under certain recent properties
[24] Kaneko, H.; Sessa, S., Fixed point theorems for compatible multi-valued and single-valued mappings, International Journal of Mathematics and Mathematical Sciences, 12, 2, 257-262 (1989) · Zbl 0671.54023
[25] Abbas, M.; Gopal, D.; Radenovic, S., A note on recently introduced commutative conditions, Indian Journal of Mathematics, 55, 2, 195-202 (2013) · Zbl 1301.54056
[26] Kadelburg, Z.; Radenovic, S.; Shahzad, N., A note on various classes of compatible-type pairs of mappings and common fixed point theorems, Abstract and Applied Analysis, 2013 (2013) · Zbl 1470.54071
[27] Ali, J.; Imdad, M., Common fixed points of nonlinear hybrid mappings under strict contractions in semi-metric spaces, Nonlinear Analysis. Hybrid Systems, 4, 4, 830-837 (2010) · Zbl 1204.54024
[28] Dhompongsa, S.; Yingtaweesittikul, H., Fixed points for multivalued mappings and the metric completeness, Fixed Point Theory and Applications, 2009 (2009) · Zbl 1179.54055
[29] Amini-Harandi, A.; O’Regan, D., Fixed point theorems for set-valued contraction type maps in metric spaces, Fixed Point Theory and Applications, 2010 (2010) · Zbl 1188.54014
[30] Imdad, M.; Soliman, A. H., Some common fixed point theorems for a pair of tangential mappings in symmetric spaces, Applied Mathematics Letters, 23, 4, 351-355 (2010) · Zbl 1213.54066
[31] Pathak, H. K.; Kang, S. M.; Cho, Y. J., Coincidence and fixed point theorems for nonlinear hybrid generalized contractions, Czechoslovak Mathematical Journal, 48, 2, 341-357 (1998) · Zbl 0949.54057
[32] Pathak, H. K.; Khan, M. S., Fixed and coincidence points of hybrid mappings, Archivum Mathematicum, 38, 3, 201-208 (2002) · Zbl 1068.47073
[33] Popa, V.; Patriciu, A. M., Coincidence and common fixed points for hybrid mappings satisfying an implicit relation and applications · Zbl 1436.54040
[34] Singh, S. L.; Hashim, A. M., New coincidence and fixed point theorems for strictly contractive hybrid maps, The Australian Journal of Mathematical Analysis and Applications, 2, 1, article 12 (2005) · Zbl 1111.54034
[35] Sintunavarat, W.; Kumam, P., Coincidence and common fixed points for hybrid strict contractions without the weakly commuting condition, Applied Mathematics Letters, 22, 12, 1877-1881 (2009) · Zbl 1225.54028
[36] Singh, S. L.; Mishra, S. N., Coincidences and fixed points of nonself hybrid contractions, Journal of Mathematical Analysis and Applications, 256, 2, 486-497 (2001) · Zbl 0985.47046
[37] Singh, S. L.; Mishra, S. N., Coincidence theorems for certain classes of hybrid contractions, Fixed Point Theory and Applications, 2010 (2010) · Zbl 1191.54046
[38] Popa, V., Fixed point theorems for implicit contractive mappings, Studii şi Cercetări Ştiinţifice. Seria Matematică, 7, 127-133 (1997) · Zbl 0967.54041
[39] Popa, V., Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Mathematica, 32, 1, 157-163 (1999) · Zbl 0926.54030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.