Ye, Shanli Norm and essential norm of composition followed by differentiation from logarithmic Bloch spaces to \(H_\mu^\infty\). (English) Zbl 1473.47012 Abstr. Appl. Anal. 2014, Article ID 725145, 6 p. (2014). Summary: In this note we express the norm of composition followed by differentiation \(D C_\varphi\) from the logarithmic Bloch and the little logarithmic Bloch spaces to the weighted space \(H_\mu^\infty\) on the unit disk and give an upper and a lower bound for the essential norm of this operator from the logarithmic Bloch space to \(H_\mu^\infty\). Cited in 2 Documents MSC: 47B37 Linear operators on special spaces (weighted shifts, operators on sequence spaces, etc.) 30H30 Bloch spaces 30H10 Hardy spaces Keywords:composition followed by differentiation; essential norm; logarithmic Bloch × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Yoneda, R., The composition operators on weighted Bloch space, Archiv der Mathematik, 78, 4, 310-317 (2002) · Zbl 1038.47020 · doi:10.1007/s00013-002-8252-y [2] Stević, S., On a new operator from the logarithmic Bloch space to the Bloch-type space on the unit ball, Applied Mathematics and Computation, 206, 1, 313-320 (2008) · Zbl 1162.47029 · doi:10.1016/j.amc.2008.09.002 [3] Ye, S., Multipliers and cyclic vectors on weighted Bloch space, Mathematical Journal of Okayama University, 48, 135-143 (2006) · Zbl 1146.30017 [4] Ye, S., A weighted composition operator between different weighted Bloch-type spaces, Acta Mathematica Sinica, 50, 927-942 (2007) · Zbl 1131.30340 [5] Ye, S., Weighted composition operators from \(F \left(p, q, s\right)\) into logarithmic bloch space, Journal of the Korean Mathematical Society, 45, 4, 977-991 (2008) · Zbl 1156.47031 · doi:10.4134/JKMS.2008.45.4.977 [6] Ye, S., Weighted composition operator between the little \(α\)-Bloch spaces and the logarithmic Bloch, Journal of Computational Analysis and Applications, 11, 2, 443-450 (2009) · Zbl 1221.47063 [7] Ye, S., A weighted composition operator on the logarithmic bloch space, Bulletin of the Korean Mathematical Society, 47, 3, 527-540 (2010) · Zbl 1250.47031 · doi:10.4134/BKMS.2010.47.3.527 [8] Ye, S., Products of Volterra-type operators and composition operators on logarithmic Bloch space, WSEAS Transactions on Mathematics, 12, 2, 180-188 (2013) [9] Hibschweiler, R. A.; Portnoy, N., Composition followed by differentiation between bergman and hardy spaces, Rocky Mountain Journal of Mathematics, 35, 3, 843-855 (2005) · Zbl 1079.47031 · doi:10.1216/rmjm/1181069709 [10] Stević, S., Norm and essential norm of composition followed by differentiation from \(\alpha \)-Bloch spaces to \(H_\mu^\infty \), Applied Mathematics and Computation, 207, 225-229 (2009) · Zbl 1157.47026 · doi:10.1016/j.amc.2008.10.032 [11] Jarchow, H.; Xiao, J., Composition operators between Nevanlinna classes and Bergman spaces with weights, The Journal of Operator Theory, 46, 605-618 (2001) · Zbl 0996.47031 [12] Madigan, K.; Matheson, A., Compact composition operators on the Bloch space, Transactions of the American Mathematical Society, 347, 2679-2687 (1995) · Zbl 0826.47023 · doi:10.1090/S0002-9947-1995-1273508-X [13] Smith, W., Composition operators between Bergman and Hardy spaces, Transactions of the American Mathematical Society, 348, 6, 2331-2348 (1996) · Zbl 0857.47020 · doi:10.1090/S0002-9947-96-01647-9 [14] Xiao, J., Compact compositon operators on the area-Nevanlinna class, Expositiones Mathematicae, 17, 255-264 (1999) · Zbl 0977.30031 [15] Ye, S.; Hu, Q., Weighted composition operators on the Zygmund space, Abstract and Applied Analysis, 2012 (2012) · Zbl 1277.47038 · doi:10.1155/2012/462482 [16] Ye, S.; Zhuo, Z., Weighted composition operators from Hardy to Zygmund type spaces, Abstract and Applied Analysis, 2013 (2013) · Zbl 1273.47050 · doi:10.1155/2013/365286 [17] Zeljko, C.; Zhao, R. H., Weighted composition operators between different weighted Bergman spaces and different Hardy spaces, Illinois Journal of Mathematics, 51, 2, 479-498 (2007) · Zbl 1147.47021 [18] Zeljko, C.; Zhao, R. H., Essential norm estimates of weighted composition operators between Bergman spaces on strongly pseudoconvex domains, Mathematical Proceedings of the Cambridge Philosophical Society, 142, 3, 525-533 (2007) · Zbl 1126.47024 · doi:10.1017/S0305004106009893 [19] Stević, S., Norm of weighted composition operators from Bloch space to \(H_\mu^\infty\) on the unit ball, Ars Combinatoria, 88, 125-127 (2008) · Zbl 1224.30195 [20] Shapiro, J. H., The essential norm of a composition operator, Annals of Mathematics, 125, 375-404 (1987) · Zbl 0642.47027 · doi:10.2307/1971314 [21] Donaway, R., Norm and essential norm estimates of compositions on Besov type spaces [M.S. thesis] (1999), University of Virgina This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.