×

Certain integral transform and fractional integral formulas for the generalized Gauss hypergeometric functions. (English) Zbl 1474.33030

Summary: A remarkably large number of integral transforms and fractional integral formulas involving various special functions have been investigated by many authors. Very recently, Agarwal gave some integral transforms and fractional integral formulas involving the \(F_p^{(\alpha, \beta)}\)\((\cdot)\). In this sequel, using the same technique, we establish certain integral transforms and fractional integral formulas for the generalized Gauss hypergeometric functions \(F_p^{(\alpha, \beta, m)}\)\((\cdot)\). Some interesting special cases of our main results are also considered.

MSC:

33C20 Generalized hypergeometric series, \({}_pF_q\)
33C70 Other hypergeometric functions and integrals in several variables
44A15 Special integral transforms (Legendre, Hilbert, etc.)

References:

[1] Srivastava, H. M.; Choi, J., Zeta and q-Zeta Functions and Associated Series and Integrals (2012), Amsterdam, The Netherlands: Elsevier Science, Amsterdam, The Netherlands · Zbl 1239.33002
[2] Agarwal, P.; Chand, M.; Purohit, S. D., A note on generating functions involving generalized Gauss hypergeometric functions
[3] Chaudhry, M. A.; Qadir, A.; Rafique, M.; Zubair, S. M., Extension of Euler’s beta function, Journal of Computational and Applied Mathematics, 78, 1, 19-32 (1997) · Zbl 0944.33003 · doi:10.1016/S0377-0427(96)00102-1
[4] Chaudhry, M. A.; Qadir, A.; Srivastava, H. M.; Paris, R. B., Extended hypergeometric and confluent hypergeometric functions, Applied Mathematics and Computation, 159, 2, 589-602 (2004) · Zbl 1067.33001 · doi:10.1016/j.amc.2003.09.017
[5] Lee, D. M.; Rathie, A. K.; Parmar, R. K.; Kim, Y. S., Generalization of extended beta function, hypergeometric and confluent hypergeometric functions, Honam Mathematical Journal, 33, 2, 187-206 (2011) · Zbl 1239.33003 · doi:10.5831/HMJ.2011.33.2.187
[6] Özergin, E., Some properties of hypergeometric functions [Ph.D. thesis] (2011), Gazimağusa, North Cyprus: Eastern Mediterranean University, Gazimağusa, North Cyprus
[7] Özergin, E.; Özarslan, M. A.; Altın, A., Extension of gamma, beta and hypergeometric functions, Journal of Computational and Applied Mathematics, 235, 16, 4601-4610 (2011) · Zbl 1218.33002 · doi:10.1016/j.cam.2010.04.019
[8] Liu, H.; Wang, W., Some generating relations for extended Appell’s and Lauricella’s hypergeometric functions · Zbl 1308.33009
[9] Parmar, R. K., A new generalization of gamma, beta, hypergeometric and confluent hypergeometric functions, Le Matematiche, 68, 2, 33-42 (2013) · Zbl 1279.33003
[10] Srivastava, H. M.; Karlsson, P. W., Multiple Gaussian Hypergeometric Series (1985), New York, NY, USA: Halsted Press, Ellis Horwood Limited, Chichester, UK, John Wiley and Sons, New York, NY, USA · Zbl 0552.33001
[11] Agarwal, P., Certain properties of the generalized Gauss hypergeometric functions, Applied Mathematics & Information Sciences, 8, 5, 2315-2320 (2014) · doi:10.12785/amis/080526
[12] Sneddon, I. N., The Use of Integral Transforms (1979), New Delhi, India: Tata McGraw-Hill, New Delhi, India · Zbl 0433.73015
[13] Agarwal, P., Fractional integration of the product of two multivariables \(H\)-function and a general class of polynomials, Advances in Applied Mathematics and Approximation Theory. Advances in Applied Mathematics and Approximation Theory, Springer Proceedings in Mathematics & Statistics, 41, 359-374 (2013), New York, NY, USA: Springer, New York, NY, USA · doi:10.1007/978-1-4614-6393-1_23
[14] Agarwal, P., Further results on fractional calculus of Saigo operators, Applications and Applied Mathematics, 7, 2, 585-594 (2012) · Zbl 1256.26003
[15] Agarwal, P., Generalized fractional integration of the \(\overline{H}\) function, Le Matematiche, 67, 2, 107-118 (2012) · Zbl 1257.26005
[16] Agarwal, P.; Jain, S., Further results on fractional calculus of Srivastava polynomials, Bulletin of Mathematical Analysis and Applications, 3, 2, 167-174 (2011) · Zbl 1314.26005
[17] Agarwal, P.; Purohit, S. D., The unified pathway fractional integral formulae, Journal of Fractional Calculus and Applications, 4, 9, 1-8 (2013) · Zbl 1488.26009
[18] Kilbas, A. A., Fractional calculus of the generalized Wright function, Fractional Calculus & Applied Analysis, 8, 2, 113-126 (2005) · Zbl 1144.26008
[19] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations. Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, 204 (2006), Amsterdam, The Netherlands: Elsevier Science, Amsterdam, The Netherlands · Zbl 1092.45003
[20] Kiryakova, V., On two Saigo’s fractional integral operators in the class of univalent functions, Fractional Calculus & Applied Analysis, 9, 2, 160-176 (2006) · Zbl 1138.30007
[21] Kiryakova, V., A brief story about the operators of the generalized fractional calculus, Fractional Calculus & Applied Analysis, 11, 2, 203-220 (2008) · Zbl 1153.26003
[22] Kumar, S.; Kumar, D.; Abbasbandy, S.; Rashidi, M. M., Analytical solution of fractional Navier-Stokes equation byusing modifed Laplace decomposition method, Ain Shams Engineering Journal, 5, 569-574 (2014) · doi:10.1016/j.asej.2013.11.004
[23] Saigo, M., On generalized fractional calculus operators, Proceedings of the International Workshop on Recent Advances in Applied Mathematics, Kuwait University · Zbl 0917.26007
[24] Saigo, M., A remark on integral operators involving the Gauss hypergeometric functions, Mathematical Reports of College of General Education. Kyushu University, 11, 2, 135-143 (1978) · Zbl 0399.45022
[25] Saigo, M., A certain boundary value problem for the Euler-Darboux equation I, Mathematica Japonica, 24, 4, 377-385 (1979) · Zbl 0428.35064
[26] Saigo, M.; Maeda, N.; Rusev, P.; Dimovski, I.; Kiryakova, V., More generalization of fractional calculus, Proceedings of the 2nd International Workshop on Transform Metods and Special Functions, IMI · Zbl 0926.26003
[27] Srivastava, H. M.; Agarwal, P., Certain fractional integral operators and the generalized incomplete hypergeometric functions, Applications and Applied Mathematics, 8, 2, 333-345 (2013) · Zbl 1282.26012
[28] Yang, A.-M.; Zhang, Y.-Z.; Cattani, C.; Xie, G.-N.; Rashidi, M. M.; Zhou, Y.-J.; Yang, X.-J., Application of local fractional series expansion method to solve Klein-Gordon equations on Cantor sets, Abstract and Applied Analysis, 2014 (2014) · Zbl 1472.35342 · doi:10.1155/2014/372741
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.