Wei, Yiheng; Karimi, Hamid Reza; Liang, Shu; Gao, Qing; Wang, Yong General output feedback stabilization for fractional order systems: an LMI approach. (English) Zbl 1406.93271 Abstr. Appl. Anal. 2014, Article ID 737495, 9 p. (2014). Summary: This paper is concerned with the problem of general output feedback stabilization for fractional order linear time-invariant (FO-LTI) systems with the fractional commensurate order \(0 < \alpha < 2\). The objective is to design suitable output feedback controllers that guarantee the stability of the resulting closed-loop systems. Based on the slack variable method and our previous stability criteria, some new results in the form of linear matrix inequality (LMI) are developed to the static and dynamic output feedback controllers synthesis for the FO-LTI system with \(0 < \alpha < 1\). Furthermore, the results are extended to stabilize the FO-LTI systems with \(1 \leq \alpha < 2\). Finally, robust output feedback control is discussed. Numerical examples are given to illustrate the effectiveness of the proposed design methods. Cited in 6 Documents MSC: 93D15 Stabilization of systems by feedback 93C15 Control/observation systems governed by ordinary differential equations 34A08 Fractional ordinary differential equations 26A33 Fractional derivatives and integrals 93B35 Sensitivity (robustness) Keywords:output feedback stabilization; fractional order systems; robust output feedback control × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Monje, C. A.; Chen, Y. Q.; Vinagre, B. M.; Xue, D.; Feliu, V., Fractional-Order Systems and Controls: Fundamentals and Applications (2010), London, UK: Springer, London, UK · Zbl 1211.93002 [2] Das, S., Functional Fractional Calculus (2011), Berlin, Germany: Springer, Berlin, Germany · Zbl 1225.26007 [3] Liao, Z.; Zhu, Z. T.; Liang, S.; Peng, C.; Wang, Y., Subspace identification for fractional order hammerstein systems based on instrumental variables, International Journal of Control, Automation and Systems, 10, 5, 947-953 (2012) · doi:10.1007/s12555-012-0511-5 [4] Lopes, A. M.; Machado, J. A. T., Root locus practical sketching rules for fractional-order systems, Abstract and Applied Analysis, 2013 (2013) · Zbl 1293.93368 · doi:10.1155/2013/102068 [5] Li, M. D.; Li, D. H.; Wang, J.; Zhao, C., Active disturbance rejection control for fractional-order system, ISA Transactions, 52, 3, 365-374 (2013) · doi:10.1016/j.isatra.2013.01.001 [6] Liang, S.; Peng, C.; Liao, Z.; Wang, Y., State space approximation for general fractional order dynamic systems, International Journal of System Science (2013) · Zbl 1317.93104 · doi:10.1080/00207721.2013.766773 [7] Liao, Z.; Peng, C.; Li, W.; Wang, Y., Robust stability analysis for a class of fractional order systems with uncertain parameters, Journal of the Franklin Institute, 348, 6, 1101-1113 (2011) · Zbl 1222.93171 · doi:10.1016/j.jfranklin.2011.04.012 [8] Mahmudov, N. I.; Sakthivel, R.; Revathi, P., Asymptotic stability of fractional stochastic neutral differential equations with infinite delays, Abstract and Applied Analysis, 2013 (2013) · Zbl 1269.60059 · doi:10.1155/2013/769257 [9] Liang, S.; Peng, C.; Wang, Y., Improved linear matrix inequalities stability criteria for fractional order systems and robust stabilization synthesis: the \(0 < \alpha < 1\) case, Control Theory & Applications, 30, 4, 531-535 (2013) [10] N’Doye, I.; Darouach, M.; Zasadzinski, M.; Radhy, N.-E., Robust stabilization of uncertain descriptor fractional-order systems, Automatica, 49, 6, 1907-1913 (2013) · Zbl 1360.93620 · doi:10.1016/j.automatica.2013.02.066 [11] Yuan, J.; Shi, B.; Ji, W. Q., Adaptive sliding mode control of a novel class of fractional chaotic systems, Advances in Mathematical Physics, 2013 (2013) · Zbl 1291.93169 · doi:10.1155/2013/576709 [12] Li, C. L.; Su, K. L.; Zhang, J., Robust control for fractional-order four-wing hyperchaotic system using LMI, Optik International Journal for Light and Electron Optics, 124, 22, 5807-5810 (2013) · doi:10.1016/j.ijleo.2013.04.054 [13] Asheghan, M. M.; Delshad, S. S.; Beheshti, M. T. H.; Tavazoei, M. S., Non-fragile control and synchronization of a new fractional order chaotic system, Applied Mathematics and Computation, 222, 1, 712-721 (2013) · Zbl 1329.37035 · doi:10.1016/j.amc.2013.07.045 [14] Tong, S. C.; Li, Y. M.; Shi, P., Observer-based adaptive fuzzy backstepping output feedback control of uncertain MIMO pure-feedback nonlinear systems, IEEE Transactions on Fuzzy Systems, 20, 4, 771-785 (2013) · doi:10.1109/TFUZZ.2012.2183604 [15] Attia, S. B.; Salhi, S.; Ksouri, M., Static switched output feedback stabilization for linear discrete-time switched systems, International Journal of Innovative Computing, Information and Control, 8, 5, 3203-3213 (2012) [16] Wu, J.; Karimi, H. R.; Shi, P., Network-based \(H_\infty\) output feedback control for uncertain stochastic systems, Information Sciences, 232, 397-410 (2013) · Zbl 1293.93276 · doi:10.1016/j.ins.2012.11.020 [17] Wu, L. G.; Zheng, W. X.; Gao, H. J., Dissipativity-based sliding mode control of switched stochastic systems, IEEE Transactions on Automatic Control, 58, 3, 785-791 (2013) · Zbl 1369.93585 · doi:10.1109/TAC.2012.2211456 [18] Su, X.; Shi, P.; Wu, L.; Song, Y. D., A novel control design on discrete-time Takagi-Sugeno fuzzy systems with time-varying delays, IEEE Transactions on Fuzzy Systems, 21, 4, 655-671 (2013) · doi:10.1109/TFUZZ.2012.2226941 [19] He, Y.; Wang, Q. G., An improved ILMI method for static output feedback control with application to multivariable PID control, IEEE Transactions on Automatic Control, 51, 10, 1678-1683 (2006) · Zbl 1366.93218 · doi:10.1109/TAC.2006.883029 [20] Yang, R. N.; Liu, G. P.; Shi, P.; Thomas, C., Predictive output feedback control for networked control systems, IEEE Transactions on Industrial Electronics, 61, 1, 512-520 (2014) · doi:10.1109/TIE.2013.2248339 [21] Dong, J. X.; Yang, G. H., Static output feedback control synthesis for linear systems with time-invariant parametric uncertainties, IEEE Transactions on Automatic Control, 52, 10, 1930-1936 (2007) · Zbl 1366.93460 · doi:10.1109/TAC.2007.906227 [22] Qiu, J. B.; Feng, G.; Gao, H. J., Observer-based piecewise affine output feedback controller synthesis of continuous-time TS fuzzy affine dynamic systems using quantized measurements, IEEE Transactions on Fuzzy Systems, 20, 6, 1046-1062 (2012) · doi:10.1109/TFUZZ.2012.2191790 [23] Chadli, M.; Guerra, T. M., LMI solution for robust static output feedback control of Takagi-Sugeno fuzzy models, IEEE Transactions on Fuzzy Systems, 20, 6, 1060-1065 (2012) · doi:10.1109/TFUZZ.2012.2196048 [24] Zhang, D. M.; Wang, X. G.; Meng, L., Consensus problems for high-order LTI systems: a decentralized static output feedback method, International Journal of Innovative Computing, Information and Control, 9, 5, 2143-2154 (2013) [25] Saadni, S. M.; Chaabane, M.; Mehdi, D., Robust stability and stabilization of a class of singular systems with multiple time-varying delays, Asian Journal of Control, 8, 1, 1-11 (2006) · doi:10.1111/j.1934-6093.2006.tb00245.x [26] Wu, L. G.; Su, X. J.; Shi, P., Output feedback control of Markovian jump repeated scalar nonlinear systems, IEEE Transactions on Automatic Control, 59, 1, 199-204 (2013) · Zbl 1360.93754 · doi:10.1109/TAC.2013.2267353 [27] Fang, Y.; Jiang, W., Output feedback stabilization for a type of fractional-order systems with delay, Information and Control, 42, 1, 33-38 (2013) · doi:10.3724/SP.J.1219.2013.00033 [28] N’Doye, I.; Voos, H.; Darouach, M., \(H_\infty\) static output feedback control for a fractional-order glucose-insulin system, Fractional Differentiation and Its Applications, 6, 1, 266-271 (2013) [29] Wang, Y.; Wei, Y. H.; Zhu, M.; Cheng, P., A novel LMI approach for robust stabilization of uncertain fractional order systems, Proceedings of the 32nd Chinese Control Conference (CCC ’13) [30] Lou, Z. Q., Static output feedback robust stability control for fractional linear systems, Microcomputer Applications, 26, 8, 11-14 (2010) [31] Gahinet, P.; Apkarian, P., A linear matrix inequality approach to \(H_\infty\) control, International Journal of Robust and Nonlinear Control, 4, 4, 421-448 (1994) · Zbl 0808.93024 · doi:10.1002/rnc.4590040403 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.