## Characterization of multiplicative Lie triple derivations on rings.(English)Zbl 1474.16113

Summary: Let $$\mathcal{R}$$ be a ring having unit 1. Denote by $$\mathcal{Z}$$$$\left(\mathcal{R}\right)$$ the center of $$\mathcal{R}$$. Assume that the characteristic of $$\mathcal{R}$$ is not 2 and there is an idempotent element $$e \in$$$$\mathcal{R}$$ such that $$a \mathcal{R} e$$$$= \left\{0\right\} \Rightarrow a = 0 \text{ and } a \mathcal{R} \left(1 - e\right) = \left\{0\right\} \Rightarrow a = 0$$. It is shown that, under some mild conditions, a map $$L : \mathcal{R} \rightarrow \mathcal{R}$$ is a multiplicative Lie triple derivation if and only if $$L \left(x\right) = \delta \left(x\right) + h \left(x\right)$$ for all $$x \in \mathcal{R}$$, where $$\delta : \mathcal{R} \rightarrow \mathcal{R}$$ is an additive derivation and $$h : \mathcal{R} \rightarrow \mathcal{Z} \left(\mathcal{R}\right)$$ is a map satisfying $$h \left(\left[\left[a, b\right], c\right]\right) = 0$$ for all $$a, b, c \in \mathcal{R}$$. As applications, all Lie (triple) derivations on prime rings and von Neumann algebras are characterized, which generalize some known results.

### MSC:

 16W25 Derivations, actions of Lie algebras
Full Text:

### References:

  Brešar, M., Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Transactions of the American Mathematical Society, 335, 2, 525-546 (1993) · Zbl 0791.16028  Mathieu, M.; Villena, A. R., The structure of Lie derivations on $$C *$$-algebras, Journal of Functional Analysis, 202, 2, 504-525 (2003) · Zbl 1032.46086  Qi, X. F.; Hou, J. C., Additive Lie $$(ξ$$-Lie) derivations and generalized Lie $$(ξ$$-Lie) derivations on nest algebras, Linear Algebra and its Applications, 431, 5-7, 843-854 (2009) · Zbl 1207.47081  Miers, C. R., Lie triple derivations of von Neumann algebras, Proceedings of the American Mathematical Society, 71, 1, 57-61 (1978) · Zbl 0384.46047  Wang, T.; Lu, F., Lie triple derivations on $$J$$-subspace lattice algebras, Abstract and Applied Analysis, 2014 (2014) · Zbl 1473.47013  Beidar, K. I.; Chebotar, M. A., On Lie derivations of Lie ideals of prime algebras, Israel Journal of Mathematics, 123, 131-148 (2001) · Zbl 0982.16025  Cheung, W.-S., Lie derivations of triangular algebras, Linear and Multilinear Algebra, 51, 3, 299-310 (2003) · Zbl 1060.16033  Lu, F.-Y., Lie triple derivations on nest algebras, Mathematische Nachrichten, 280, 8, 882-887 (2007) · Zbl 1124.47054  Posner, E. C., Derivations in prime rings, Proceedings of the American Mathematical Society, 8, 1093-1100 (1957) · Zbl 0082.03003  Qi, X.-F.; Hou, J.-C., Characterization of Lie derivations on von Neumann algebras, Linear Algebra and Its Applications, 438, 1, 533-548 (2013) · Zbl 1279.47056  Daif, M. N., When is a multiplicative derivation additive?, International Journal of Mathematics and Mathematical Sciences, 14, 3, 615-618 (1991) · Zbl 0733.16013  Yu, W.; Zhang, J.-H., Nonlinear Lie derivations of triangular algebras, Linear Algebra and Its Applications, 432, 11, 2953-2960 (2010) · Zbl 1193.16030  Ji, P.-S.; Liu, R.-R.; Zhao, Y.-Z., Nonlinear Lie triple derivations of triangular algebras, Linear and Multilinear Algebra, 60, 10, 1155-1164 (2012) · Zbl 1263.16044  Li, C.-J.; Fang, X.-C., Lie triple and Jordan derivable mappings on nest algebras, Linear and Multilinear Algebra, 61, 5, 653-666 (2013) · Zbl 1278.47094  Kadison, R. V.; Ringrose, J. R., Fundamentals of the Theory of Operator Algebras, Vol. I (1983), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0518.46046  Miers, C. R., Lie homomorphisms of operator algebras, Pacific Journal of Mathematics, 38, 717-735 (1971) · Zbl 0204.14803  Brešar, M.; Miers, C. R., Commutativity preserving mappings of von Neumann algebras, Canadian Journal of Mathematics, 45, 4, 695-708 (1993) · Zbl 0794.46045  Kleinecke, D. C., On operator commutators, Proceedings of the American Mathematical Society, 8, 535-536 (1957) · Zbl 0079.12904  Bai, Z.-F.; Du, S.-P., Strong commutativity preserving maps on rings · Zbl 1312.16041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.